浙江电力

2024, v.43;No.340(08) 74-84

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

计及通信资源优化的温控负荷调控策略
A scheduling strategy for thermostatically-controlled loads considering communication resource optimization

权超,冯怿彬,赵鲁臻,陶炳权,谢杭,杨浩然,祁兵
QUAN Chao,FENG Yibin,ZHAO Luzhen,TAO Bingquan,XIE Hang,YANG Haoran,QI Bing

摘要(Abstract):

海量需求侧数据的传输需求使得通信网络的压力成倍增加,容易造成通信延迟、拥塞、中断等现象,影响供需互动业务实时性,不利于负荷调控的进一步实施。针对上述问题,以实现通信受限情况下新能源发电的精准消纳为目标,提出一种计及通信资源优化的负荷精细化调控策略。首先基于信息物理融合技术,建立考虑通信网络影响的温控负荷调控机制。进而基于通信网络模型和计及通信时延的改进温控负荷模型,采用自适应权重与反向学习策略相结合的改进粒子群算法,实现考虑通信资源均衡的温控负荷精细化调控。最后通过算例仿真,验证了所提算法能够合理分配通信资源,使得温控负荷在通信链路时延较大的情况下仍具备良好的消纳能力。
Due to the transmission demand for massive demand-side data, the pressure on communication networks has doubled and redoubled, leading to communication delays, congestion, interruptions, and other problems, which impact the real-time interaction of supply and demand services and hinder further implementation of load scheduling. To address the aforementioned issues and achieve precise consumption of new energy generation under communication constraints, a refined load scheduling strategy considering communication resource optimization is proposed. Firstly, based on information physical fusion technology, a scheduling mechanism for thermostaticallycontrolled loads considering the influence of communication networks is established. Subsequently, by use of a communication network model and an improved thermostatically-controlled load model that takes account of communication delay, an improved particle swarm optimization(PSO) that combines adaptive weighting and reverse learning is utilized, a refined thermostatically-controlled load scheduling considering communication resource balance is achieved. Finally, numerical simulation demonstrates that the proposed method can reasonably allocate communication resources and thermostatically-controlled loads maintain good consumption capability even under significant communication link delays.

关键词(KeyWords): 温控负荷;负荷调控;新能源消纳;通信时延;AO-MO粒子群优化算法
thermostatically-controlled load;load scheduling;new energy consumption;communication delay;AO-MO particle swarm optimization

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211NB230004)

作者(Author): 权超,冯怿彬,赵鲁臻,陶炳权,谢杭,杨浩然,祁兵
QUAN Chao,FENG Yibin,ZHAO Luzhen,TAO Bingquan,XIE Hang,YANG Haoran,QI Bing

DOI: 10.19585/j.zjdl.202408009

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享