电力-交通混合约束下电动汽车充电行为时空引导方法A spatiotemporal guidance method for EV charging behaviors under coupled power-transportation network constraints
高润天,罗李子,韩少华,王城煌,庞吉年
GAO Runtian,LUO Lizi,HAN Shaohua,WANG Chenghuang,PANG Jinian
摘要(Abstract):
当前大规模电动汽车的行驶与充电行为加强了电网与交通网的交互联系,因此提出一种电力-交通混合约束下电动汽车充电行为时空引导方法。建立了计及交通道路网络拓扑、道路阻抗函数关系的路-电耦合模型;运用Dijkstra算法确定备选行驶路径,考虑排队时长和通行时长建立电动汽车充电行为引导模型,深入分析交通-电网混合约束下配电网快充负荷接纳能力,以用户、电网综合成本最小为目标引导用户选择快速充电站;以某市部分主城区为例,对200辆具有快充需求的电动汽车进行仿真。结果表明,所提充电引导策略能够在节约用户时间的同时,提高快速充电站的运营效率,保证配电网的运行安全。
The increasing travel and charging behaviors of large-scale electric vehicles(EVs) have strengthened the interactive connections between power grids and transportation networks. To address this, this paper proposes a spatiotemporal guidance method for EV charging behaviors under coupled power-transportation network constraints. A road-power coupling model that incorporates transportation network topology and road impedance function. By using Dijkstra's algorithm to determine alternative travel routes, an EV charging behavior guidance model that incorporates both queuing time and travel duration is developed. The model thoroughly analyzes the fast-charging load hosting capacity of distribution networks under coupled power-transportation network constraints, guiding users to select fast-charging stations with the objective of minimizing combined costs for both users and the power grid. Simulations of 200 fast-charging EVs in an urban district demonstrate that the proposed charging guidance strategy can save users' time while improving the operational efficiency of fast-charging stations and ensuring the operational security of the distribution networks.
关键词(KeyWords):
电力-交通混合约束;电动汽车;充电行为时空引导;混合整数二阶锥规划
coupled power-transportation network constraints;EV;spatiotemporal charging behavior guidance;MISOCP
基金项目(Foundation): 国家自然科学基金(52007082);; 江苏省青年科技人才托举工程(JSTJ-2024-179)
作者(Author):
高润天,罗李子,韩少华,王城煌,庞吉年
GAO Runtian,LUO Lizi,HAN Shaohua,WANG Chenghuang,PANG Jinian
DOI: 10.19585/j.zjdl.202508003
参考文献(References):
- [1]国务院办公厅.新能源汽车产业发展规划(2021—2035)[EB/OL].(2020-11-02)[2025-2-24]. https//www. gov.cn/zhengce/zhengceku/2020/11/02/content_5556716.htm?eqid=df238227000bbe5c00000006648b1b2c.
- [2]中华人民共和国中央人民政府.图表:全国机动车达4.4亿辆驾驶人达5.32亿人[EB/OL].(2024-07-08)[2025-2-24]. https://www. gov. cn/zhengce/jiedu/tujie/202407/content_6962004.htm.
- [3]中国汽车工程学会.节能与新能源汽车技术路线图2.0[M].北京:机械工业出版社,2020.
- [4]徐潇源,李佳琪,王晗,等.城市电力-交通系统韧性研究综述及展望[J].电力系统自动化,2024,48(23):1-15.XU Xiaoyuan,LI Jiaqi,WANG Han,et al. Review and prospect of research on urban power-transportation system resilience[J]. Automation of Electric Power Systems,2024,48(23):1-15.
- [5]胡泽春,邵成成,何方,等.电网与交通网耦合的设施规划与运行优化研究综述及展望[J].电力系统自动化,2022,46(12):3-19.HU Zechun,SHAO Chengcheng,HE Fang,et al.Review and prospect of research on facility planning and optimal operation for coupled power and transportation networks[J]. Automation of Electric Power Systems,2022,46(12):3-19.
- [6]张帅,刘一欣,张宇轩,等.电动汽车接入对配电网运行特性影响的综合评估方法[J].浙江电力,2022,41(3):1-10.ZHANG Shuai,LIU Yixin,ZHANG Yuxuan,et al. A comprehensive assessment method for operational characteristics of distribution networks with the access of electric vehicles[J].Zhejiang Electric Power,2022,41(3):1-10.
- [7]李天宁,王浩国,董灵鹏,等.考虑居民小区充电负荷与成本的电动汽车有序充电策略[J].浙江电力,2022,41(5):8-13.LI Tianning,WANG Haoguo,DONG Lingpeng,et al.Research on coordinated charging strategy considering load and cost of electric vehicles in a residential quarter[J].Zhejiang Electric Power,2022,41(5):8-13.
- [8]陈业夫,王钦,蔡新雷,等.计及规模化电动汽车调控潜力的含风电系统优化调度策略[J].浙江电力,2024,43(4):95-104.CHEN Yefu,WANG Qin,CAI Xinlei,et al.An optimal scheduling strategy for wind-integrated systems considering the regula-tory potential of large-scale electric vehicles[J].Zhejiang Electric Power,2024,43(4):95-104.
- [9] SU S,LI Y J,YAMASHITA K,et al. Electric vehicle charging guidance strategy considering“traffic networkcharging station-driver” modeling:a multiagent deep reinforcement learning-based approach[J].IEEE Transactions on Transportation Electrification,2024,10(3):4653-4666.
- [10] QIAN T,LIANG Z Y,CHEN S,et al.A tri-level demand response framework for EVCS flexibility enhancement in coupled power and transportation networks[J]. IEEE Transactions on Smart Grid,2025,16(1):598-611.
- [11] CHEN Y Y,HU S,XIE S W,et al.Optimal dynamic pricing of fast charging stations considering bounded rationality of users and market regulation[J].IEEE Transactions on Smart Grid,2024,15(4):3950-3965.
- [12] CHEN Y Y,ZHENG Y C,HU S,et al.Optimal operation of fast charging station aggregator in uncertain electricity markets considering onsite renewable energy and bounded EV user rationality[J]. IEEE Transactions on Industrial Informatics,2024,20(11):13384-13395.
- [13]李恒杰,夏强强,史一炜,等.考虑目标充电站选择冲突的电动汽车充电引导策略[J].电力自动化设备,2022,42(5):68-74.LI Hengjie,XIA Qiangqiang,SHI Yiwei,et al.Electric vehicle charging guidance strategy considering selection conflict of target charging stations[J].Electric Power Automation Equipment,2022,42(5):68-74.
- [14]周毅,袁泉,汤奕,等.基于路–电耦合网络的电动汽车充电决策优化方法[J].电网技术,2021,45(9):3563-3572.ZHOU Yi,YUAN Quan,TANG Yi,et al.Charging decision optimization for electric vehicles based on traffic-grid coupling networks[J].Power System Technology,2021,45(9):3563-3572.
- [15]郑远硕,李峰,董九玲,等.“车-路-网”模式下电动汽车充放电时空灵活性优化调度策略[J].电力系统自动化,2022,46(12):88-97.ZHENG Yuanshuo,LI Feng,DONG Jiuling,et al.Optimal dispatch strategy of spatio-temporal flexibility for electric vehicle charging and discharging in vehicle-road-grid mode[J].Automation of Electric Power Systems,2022,46(12):88-97.
- [16]苏粟,杨恬恬,李玉璟,等.考虑实时动态能耗的电动汽车充电路径规划[J].电力系统自动化,2019,43(7):136-143.SU Su,YANG Tiantian,LI Yujing,et al.Charging route planning for electric vehicles considering real-time dynamic energy consumption[J]. Automation of Electric Power Systems,2019,43(7):136-143.
- [17]邵尹池,穆云飞,林佳颖,等.“车-站-网”多元需求下的电动汽车快速充电引导策略[J].电力系统自动化,2019,43(18):60-66.SHAO Yinchi,MU Yunfei,LIN Jiaying,et al.Fast charging guidance strategy for multiple demands of electric vehicle,fast charging station and distribution network[J].Automation of Electric Power Systems,2019,43(18):60-66.
- [18] FERRO G,MINCIARDI R,ROBBA M.A user equilibrium model for electric vehicles:Joint traffic and energy demand assignment[J].Energy,2020,198:117299.
- [19] BRINKEL N,VAN WIJK T,BUIJZE A,et al.Enhancing smart charging in electric vehicles by addressing paused and delayed charging problems[J]. Nature Communications,2024,15(1):5089.
- [20]潘义勇,余婷,马健霄.基于路段与节点的城市道路阻抗函数改进[J].重庆交通大学学报(自然科学版),2017,36(8):76-81.PAN Yiyong,YU Ting,MA Jianxiao.Improvement of urban road impedance function based on section impedance and node impedance[J]. Journal of Chongqing Jiaotong University(Natural Science),2017,36(8):76-81.
- [21]何品泉.面向车-网深度交互场景的电动汽车优化运行方法研究[D].南京:南京理工大学,2023.HE Pinquan. Research on optimal operation method of electric vehicle for vehicle-network deep interaction scenario[D]. Nanjing:Nanjing University of Science and Technology,2023.
- [22]罗李子.互动环境下分布式电源与电动汽车充电站的优化配置方法研究[D].南京:东南大学,2019.LUO Lizi. Research on optimal allocation method of distributed power supply and electric vehicle charging station in interactive environment[D].Nanjing:Southeast University,2019.
- [23]杨妮.计及用户个体差异的电动汽车充电导航及路径选择策略研究[D].秦皇岛:燕山大学,2022.YANG Ni. Research on charging navigation and routing strategy of electric vehicles considering individual user differences[D].Qinhuangdao:Yanshan University,2022.
- [24] LUO L Z,HE P Q,GU W,et al.Temporal-spatial scheduling of electric vehicles in AC/DC distribution networks[J].Energy,2022,255:124512.
- 电力-交通混合约束
- 电动汽车
- 充电行为时空引导
- 混合整数二阶锥规划
coupled power-transportation network constraints - EV
- spatiotemporal charging behavior guidance
- MISOCP