浙江电力

2021, v.40;No.298(02) 105-111

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于全卷积网络的阀门粘滞检测方法
A Valve Stiction Detection Method Based on Fully Convolutional Network

解剑波,范海东,李清毅,刘梦杰,赵春晖
XIE Jianbo,FAN Haidong,LI Qingyi,LIU Mengjie,ZHAO Chunhui

摘要(Abstract):

在自动控制回路的运行过程中,阀门可能会出现粘滞,导致回路发生振荡,控制性能下降。针对阀门粘滞检测问题,提出一种基于全卷积网络的阀门粘滞自动检测方法。使用仿真模型生成阀门正常和出现粘滞时的控制器输出以及过程变量数据,并以此对全卷积网络进行训练。在线应用时,将待测回路的运行数据经过预处理后输入训练好的网络中,以得到阀门粘滞检测结果。在某火电厂的密封水控制回路数据以及公开数据集上的实验结果表明,该方法能够准确地进行阀门粘滞检测。
During the operation of the automatic control loop, the valve may suffer from stiction, which will cause loop oscillation and control performance degradation. Therefore, this paper proposes an automatic valve stiction detection method based on fully convolutional network. A simulation model is used to generate the controller output and process variable data during normal valve operation and stiction, and the data are used to train the fully convolutional network. In the online application stage, the operating data of the loop to be tested is preprocessed and then input into the trained network to get the valve stiction detection result. Experimental results on the sealing water control loop data of a thermal power plant and public data set show that this method can accurately detect valve stiction.

关键词(KeyWords): 阀门粘滞;全卷积网络;多变量时间序列
valve stiction;fully convolutional network;multivariate time series

Abstract:

Keywords:

基金项目(Foundation): 浙江省重点研发项目(2019C01048)

作者(Author): 解剑波,范海东,李清毅,刘梦杰,赵春晖
XIE Jianbo,FAN Haidong,LI Qingyi,LIU Mengjie,ZHAO Chunhui

DOI: 10.19585/j.zjdl.202102018

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享