特高压钢管输电塔气动力特性的CFD数值模拟CFD numerical simulation of aerodynamic characteristics of a UHV steel tubular transmission tower
王振国,张顺,姜文东,段忠东,徐枫
WANG ZhenGuo,ZHANG Shun,JIANG Wendong,DUAN Zhongdong,XU Feng
摘要(Abstract):
采用CFD(计算流体力学)数值模拟方法研究了特高压圆管输电塔的气动力特性。基于SOLIDWORKS和ICEM软件建立了输电塔整塔的精细化CFD数值模型,采用基于RANS的SST k-ω湍流模型模拟输电塔周围的空气流动,重点分析了不同风速和风向角下输电塔各塔段的气动力系数,并将数值计算得到的各塔段阻力系数与国内外规范值进行了详细对比分析。研究结果表明:输电塔最高处的参考风速对气动力系数的影响很小;大部分塔身的阻力系数值关于风向角45°呈现对称状态;在45°~90°风向角内,阻力系数随着风向角的变化呈先减小后增大趋势,在60°达到最小值;塔身的升力系数几乎为0;数值模拟得到的大部分塔段(除塔腿及其相邻段)的阻力系数大于规范取值。
The CFD(computational fluid dynamics) numerical simulation is used to study the aerodynamic characteristics of a UHV steel tubular transmission tower. A refined CFD numerical model of the whole transmission tower is established based on SOLIDWORKS and ICEM. The airflow around the tower is simulated using the SST k-ω turbulence model based on RANS, and the aerodynamic coefficients of each tower section under different wind speeds and wind angles are analyzed. Moreover, the drag coefficients obtained from numerical calculation of each tower section are compared with standard values at home and abroad. The results of the study show that the reference wind speed at the highest point of the transmission tower has little effect on the aerodynamic coefficient; the drag coefficients of most tower sections symmetrically distribute with a wind angle of 45°; the drag coefficients tend to decrease and then increase with the change of wind angle from 45° to 90° and reaches the minimum at 60°; the lift coefficient of the tower is almost zero; the drag coefficients of most tower sections(except for the legs and adjoining sections) obtained from numerical simulation are greater than the standard value.
关键词(KeyWords):
圆管输电塔;特高压;气动力系数;计算流体力学;数值模拟
tubular transmission tower;UHV;aerodynamic coefficient;CFD;numerical simulation
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS220006)
作者(Author):
王振国,张顺,姜文东,段忠东,徐枫
WANG ZhenGuo,ZHANG Shun,JIANG Wendong,DUAN Zhongdong,XU Feng
DOI: 10.19585/j.zjdl.202307007
参考文献(References):
- [1]EI DAMATTY A,HAMADA A.F2 Tornado velocity profiles critical for transmission line structures[J].Engineering Structures,2016,106:436-449.
- [2]HUANG M F,WU L Y,XU Q,et al.Bayesian approach for typhoon-induced fragility analysis of real overhead transmission lines[J].Engineering Mechanics,2020,146(9):04020092.
- [3]邹良浩,梁枢果,邹垚,等.格构式塔架风载体型系数的风洞试验研究[J].特种结构,2008,25(5):41-43.ZOU Lianghao,LIANG Shuguo,ZOU Yao,et al.Investigation on wind load shape coefficient of lattice towers by wind tunnel tests[J].Special Structures,2008,25(5):41-43.
- [4]沈国辉,项国通,郭勇,等.圆钢输电塔架的风荷载体型系数研究[J].特种结构,2015,32(5):62-65.SHEN Guohui,XIANG Guotong,GUO Yong,et al.Study on wind load shape coefficient of round steel transmission tower[J].Special Structures,2015,32(5):62-65.
- [5]沈国辉,项国通,邢月龙,等.2种风场下格构式圆钢塔的天平测力试验研究[J].浙江大学学报(工学版),2014,48(4):704-710.SHEN Guohui,XIANG Guotong,XING Yuelong,et al.Experimental study on balance force measurement of lattice round steel tower under two kinds of wind fields[J].Journal of Zhejiang University (Engineering Science),2014,48(4):704-710.
- [6]卞荣,楼文娟,李航,等.不同流场下钢管输电塔塔身气动力特性[J].浙江大学学报(工学版),2019,53(5):910-916.BIAN Rong,LOU Wenjuan,LI Hang,et al.Aerodynamic characteristics of steel tubular transmission tower in different flow fields[J].Journal of Zhejiang University (Engineering Science),2019,53(5):910-916.
- [7]YANG F L,YANG J B,NIU H J,et al.Design wind loads for tubular-angle steel cross-arms of transmission towers under skewed wind loading[J].Journal of Wind Engineering and Industrial Aerodynamics,2015,140:10-18.
- [8]ZHANG D K,HU X Y,SONG X Q,et al.Investigation on aerodynamic characteristics for steel tubular cross-arms of transmission tower under skew wind[J].Wind Engineering and Industrial Aerodynamics,2022,222:104914.
- [9]谢华平,何敏娟,马人乐.基于CFD模拟的格构塔平均风荷载分析[J].中南大学学报(自然科学版),2010,41(5):1980-1986.XIE Huaping,HE Minjuan,MA Renle.Analyse of mean wind load of lattice tower based on CFD simulation[J].Journal of Central South University (Science and Technology),2010,41(5):1980-1986.
- [10]王勇,吕令毅.龙卷风作用下输电塔结构的单向流固耦合分析[J].特种结构,2017,34(2):13-19.WANG Yong,LV Lingyi.One-way fluid-structure interaction analysis of transmission tower under tornado loading[J].Special Structures,2017,34(2):13-19.
- [11]黄文锋,陈星,张延.窄基角钢输电塔风载体型系数数值模拟[J].合肥工业大学学报(自然科学版),2018,41(9):1213-1217.HUANG Wenfeng,CHEN Xing,ZHANG Yan.Numerical simulation of shape coefficient of wind load on an angle steel transmission tower with narrow foundation[J].Journal of Hefei University of Technology (Natural Science),2018,41(9):1213-1217.
- [12]中华人民共和国住房和城乡建设部.建筑工程风洞试验方法标准:JGJ/T 338-2014[S].北京:中国建筑工业出版社,2014.
- [13]中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012[S].北京:中国建筑工业出版社,2012.
- [14]国家能源局.架空输电线路荷载规范:DL/T 5551-2018[S].北京:中国计划出版社,2018.
- [15]ASCE.Guidelines for electrical transmission line structural loading(third edition):ASCE 74-2009[S].New York:ASCE,2009.
- [16]BS EN.Overhead electrical lines exceeding AC 1 k V part1:general requirements-common specifications:BS EN50341-1-2012[S].Brussels:CENELEC,2012.
- [17]BS EN.Eurocode 3-design of steel structures-part 3-1:towers,masts and chimneys-towers and masts:BS EN1993-3-1-2006[S].Brussels:CEN,2006.
- [18]JEC.Design standards on structures for transmissions:JEC-TR-00007-2015[S].Tokyo:JEC,2015.
- [19]AS/NZS.Overhead line design:AS/NZS 7000-2016[S].Sydney:Technical Committee EL-052,2016.
- [20]IEC.Design criteria of overhead transmission lines:IEC60826-2016[S].South Africa:IEC,2016.