考虑dq轴耦合及线路分布参数的分布式电站谐波不稳定分析Harmonic instability analysis of distributed power stations considering dq-axis coupling and line distribution parameters
龚利武,陈超,钱国良,张炜,徐方维,陈锴,郑鸿儒
GONG Liwu,CHEN Chao,QIAN Guoliang,ZHANG Wei,XU Fangwei,CHEN Kai,ZHENG Hongru
摘要(Abstract):
针对同时考虑dq轴耦合和线路分布参数两种因素下,分布式电站系统超越方程零、极点难以求解问题,建立同时考虑二者的电站阻抗模型,提出基于Padé近似的超越方程矩阵行列式零、极点求解方法,并给出系统传递函数矩阵行列式零、极点计算的详细步骤。进一步,分析不同场景下两种因素对系统谐波不稳定分析的影响。研究表明,所提方法可准确分析同时考虑两种因素下的分布式电站谐波不稳定问题,忽略二者中任一因素均可能造成稳定性误判,且考虑线路分布参数是求解高频谐波放大点的必要前提。仿真结果验证了所提方法的有效性。
To address the challenge of solving the zero-pole of transcendental equation for distributed power station with simultaneous consideration of two factors, i.e., dq-axis coupling and line distribution parameter, an impedance model for distributed power station considering the two factors is established. This paper proposes a matrixdeterminant zero-pole solution method for transcendental equation using Padé approximation and provides detailed steps for calculating the zero-pole distribution of the transfer function. Furthermore,it analyzes the impact of the two factors on harmonic instability analysis in the system under different scenarios. The research demonstrates that the proposed method can accurately analyze harmonic instability issues when these two factors are considered simultaneously. And ignoring one of the two factors may result in the misjudgment of stability, and considering the line distribution parameter is a necessary prerequisite for solving the amplification point of high-frequency harmonics. The effectiveness of the proposed method is verified by simulation.
关键词(KeyWords):
分布式电站;谐波不稳定;分布参数;dq轴耦合;超越方程;Padé近似
distributed power station;harmonic instability;distribution parameters;dq-axis coupling;transcendent equation;Padé approximation
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211JX220005)
作者(Author):
龚利武,陈超,钱国良,张炜,徐方维,陈锴,郑鸿儒
GONG Liwu,CHEN Chao,QIAN Guoliang,ZHANG Wei,XU Fangwei,CHEN Kai,ZHENG Hongru
DOI: 10.19585/j.zjdl.202405006
参考文献(References):
- [1]徐三敏,张云飞,赵添辰,等.“双碳”目标下新型电力系统发展综述[J].水电与抽水蓄能,2022,8(6):21-25.XU Sanmin,ZHANG Yunfei,ZHAO Tianchen,et al.Overview of new-type power system development under the background of carbon peaking and carbon neutrality[J].Hydropower and Pumped Storage,2022,8(6):21-25.
- [2]陈畅,杨洪耕.风火打捆半波长交流输电系统的谐振分析[J].电力自动化设备,2019,39(2):50-57.CHEN Chang,YANG Honggeng. Harmonic resonance analysis for wind-thermal-bundled half-wavelength AC transmission system[J].Electric Power Automation Equipment,2019,39(2):50-57.
- [3] HATZIARGYRIOU N D, MILANOVIC J V,RAHMANN C,et al.Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies[R]. Piscataway.NJ,USA:Technical Report PES-TR77,Power System Dynamic Performance Committee,2020:24-25.
- [4]李明节,于钊,许涛,等.新能源并网系统引发的复杂振荡问题及其对策研究[J].电网技术,2017,41(4):1035-1042.LI Mingjie,YU Zhao,XU Tao,et al.Study of complex oscillation caused by renewable energy integration and its solution[J].Power System Technology,2017,41(4):1035-1042.
- [5]王洋,杜文娟,王海风.风电并网系统次同步振荡频率漂移问题[J].电工技术学报,2020,35(1):146-157.WANG Yang,DU Wenjuan,WANG Haifeng.Frequency drift of sub-synchronous oscillation in wind turbine generator integrated power system[J]. Transactions of China Electrotechnical Society,2020,35(1):146-157.
- [6]谢小荣,刘华坤,贺静波,等.新能源发电并网系统的小信号阻抗/导纳网络建模方法[J].电力系统自动化,2017,41(12):26-32.XIE Xiaorong,LIU Huakun,HE Jingbo,et al. Smallsignal impedance/admittance network modeling for gridconnected renewable energy generation systems[J].Automation of Electric Power Systems,2017,41(12):26-32.
- [7]高磊,吕敬,蔡旭.如东海上风电柔直送出系统的中频振荡特性分析[J].电网技术,2023,47(9):3495-3509.GAO Lei,LüJing,CAI Xu.Analysis of mid-frequency oscillation characteristics in Rudong MMC-HVDC system for offshore wind farms[J]. Power System Technology,2023,47(9):3495-3509.
- [8]谢小荣,李浩志.电力系统振荡研究进展[J].科学通报,2020,65(12):1119-1129.XIE Xiaorong,LI Haozhi. Advances on power system oscillation[J].Chinese Science Bulletin,2020,65(12):1119-1129.
- [9]李岩,邹常跃,饶宏,等.柔性直流与极端交流系统间的谐波谐振[J].中国电机工程学报,2018,38(增刊1):19-23.LI Yan,ZOU Changyue,RAO Hong,et al.Resonance of VSC-HVDC with extreme AC grid[J].Proceedings of the CSEE,2018,38(S1):19-23.
- [10] CHEN Z Y,LUO A,KUANG H M,et al.Harmonic resonance characteristics of large-scale distributed power plant in wideband frequency domain[J].Electric Power Systems Research,2017,143:53-65.
- [11]伍双喜,陈垒,杨银国,等.面向宽频振荡抑制的宽频相量测量装置[J].电力自动化设备,2022,42(8):215-220.WU Shuangxi,CHEN Lei,YANG Yinguo,et al. Wideband phasor measurement device for wideband oscillation mitigation[J]. Electric Power Automation Equipment,2022,42(8):215-220.
- [12]谢小荣,贺静波,毛航银,等.“双高”电力系统稳定性的新问题及分类探讨[J].中国电机工程学报,2021,41(2):461-475.XIE Xiaorong,HE Jingbo,MAO Hangyin,et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE,2021,41(2):461-475.
- [13]马智泉,徐群伟,吕文韬,等.孤岛方式下MMC长电缆连接点的高次谐波测试[J].电力电容器与无功补偿,2020,41(4):145-151.MA Zhiquan,XU Qunwei,LYU Wentao,et al. Test on high order harmonics of long cable connection point of MMC under isolated island[J].Power Capacitor&Reactive Power Compensation,2020,41(4):145-151.
- [14] CHEN Z Y,HUANG X C,LUO A,et al.Wideband harmonic resonance characteristics and coordinated damping method for distributed generation power plants[J]. IEEE Transactions on Industrial Electronics,2019,66(10):7753-7764.
- [15]陈智勇,罗安,黄旭程,等.基于欧拉公式的宽频谐波谐振稳定性评估法[J].中国电机工程学报,2020,40(5):1509-1523.CHEN Zhiyong,LUO An,HUANG Xucheng,et al.Euler’s formula-based stability assessment for wideband harmonic resonances[J].Proceedings of the CSEE,2020,40(5):1509-1523.
- [16] PENG X,YANG H.Stability analysis of multi-paralleled grid-connected inverters including the distribution parameter characteristics of transmission lines[J].CSEE Journal of Power and Energy Systems,2021,7(1):93-104.
- [17] PENG X,YANG H. Impedance-based stability criterion for the stability evaluation of grid-connected inverter systems with distributed parameter lines[J].CSEE Journal of Power and Energy Systems,2023,9(1):145-157.
- [18]代锋,王钢,曾德辉,等.MMC-HVDC输电系统中高频阻抗建模及谐振机理分析[J].电网技术,2022,46(6):2356-2372.DAI Feng,WANG Gang,ZENG Dehui,et al.Medium-&high-frequency impedance modeling and resonance mechanism analysis of MMC-HVDC transmission system[J].Power System Technology,2022,46(6):2356-2372.
- [19]张雪丽,杨洪耕,王杨,等.考虑线路分布参数的并网系统稳定性分析[J].智慧电力,2021,49(4):44-50.ZHANG Xueli,YANG Honggeng,WANG Yang,et al.Stability analysis of grid connected system considering line distribution parameters[J]. Smart Power,2021,49(4):44-50.
- [20] SUN J A. Impedance-based stability criterion for gridconnected inverters[J].IEEE Transactions on Power Electronics,2011,26(11):3075-3078.
- [21] YE J P,LI Q,XIONG H,et al.IDR/QR:an incremental dimension reduction algorithm via QR decomposition[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(9):1208-1222.
- [22] MODALAVALASA S,SAHOO S,SAHOO U K,et al.Fast diffusion minimum generalized rank norm based on QR decomposition[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2022,69(3):1942-1946.
- [23] LORENTZEN L.Padéapproximation and continued fractions[J].Applied Numerical Mathematics,2010,60(12):1364-1370.
- [24]吴敬坤,中国电力工程顾问集团有限公司,中国能源建设集团规划设计有限公司.电力工程设计手册24:电力系统规划设计[M].北京:中国电力出版社,2019:86-87.
- [25] RADWAN A A A,MOHAMED Y A R I.Improved vector control strategy for current-source converters connected to very weak grids[J]. IEEE Transactions on Power Systems,2016,31(4):3238-3248.
- [26]国家技术监督局.电能质量公用电网谐波:GB/T 14549—1993[S].北京:中国电力出版社,1993.
- 分布式电站
- 谐波不稳定
- 分布参数
- dq轴耦合
- 超越方程
- Padé近似
distributed power station - harmonic instability
- distribution parameters
- dq-axis coupling
- transcendent equation
- Padé approximation