基于动态主从博弈模型的综合能源系统碳交易方法A carbon trading method for integrated energy systems based on a dynamic masterslave game model
陈勇,芮俊,肖雷鸣,邓超
CHEN Yong,RUI Jun,XIAO Leiming,DENG Chao
摘要(Abstract):
为完善发展碳交易机制中多主体之间的利益互动关系,提出一种以碳交易JMO(联合市场运营商)为领导者、多主体IES(综合能源系统)为跟随者的主从博弈方法,实现不同IES的低碳经济运行。首先,在碳排放阶梯惩罚机制下对各利益主体IES运行效益进行建模分析,提出IES低碳排和低成本双重模式可选的运行策略。其次,基于动态非合作Stackelberg博弈优化框架,根据各利益主体的运行模式,建立多主体参与的碳交易模型。最后,分别采用自适应差分进化算法和Gurobi求解器对主从博弈决策模型进行求解。算例分析结果表明,该碳交易机制可有效实现IES运行的低碳性和经济性。
To enhance the interaction among multiple agents in carbon trading mechanisms, a leader-follower game method is proposed, with carbon trading JMO(joint market operator) as the leader and multiple IES(integrated energy systems) as followers. This method aims to achieve low-carbon economic operation for different IES. Firstly, under the tiered penalty mechanism for carbon emission, the operational benefits of various agents' IES are modeled and analyzed. A dual-mode operation strategy for IES, which includes options for low carbon emission and low cost, is proposed. Secondly, based on the dynamic non-cooperative Stackelberg game optimization framework, a carbon trading model involving multiple agents is established according to the operational modes of each agent. Finally, the decision-making model of the leader-follower game is solved using both adaptive differential evolution(DE) algorithm and the Gurobi optimizer. Case analysis results demonstrate that this carbon trading mechanism can effectively achieve both low-carbon and economic operation for IES.
关键词(KeyWords):
低碳;综合能源系统;碳排放;碳交易;动态非合作Stackelberg博弈
low carbon;IES;carbon emission;carbon trading;dynamic non-cooperative Stackelberg game
基金项目(Foundation): 浙江大有集团有限公司科技项目(DY2022-22);; 浙江省科技计划项目(2024C01018)
作者(Author):
陈勇,芮俊,肖雷鸣,邓超
CHEN Yong,RUI Jun,XIAO Leiming,DENG Chao
DOI: 10.19585/j.zjdl.202404006
参考文献(References):
- [1]张希良,姜克隽,赵英汝,等.促进能源气候协同治理机制与路径跨学科研究[J].全球能源互联网,2021,4(1):1-4.ZHANG Xiliang,JIANG Kejun,ZHAO Yingru,et al.Boost interdisciplinary research on development pathway and synergy governance of energy and climate[J].Journal of Global Energy Interconnection,2021,4(1):1-4.
- [2]丁涛,牟晨璐,别朝红,等.能源互联网及其优化运行研究现状综述[J].中国电机工程学报,2018,38(15):4318-4328.DING Tao,MU Chenlu,BIE Zhaohong,et al.Review of energy Internet and its operation[J]. Proceedings of the CSEE,2018,38(15):4318-4328.
- [3]吴磊.综合能源系统多时间尺度低碳经济调度研究[D].沈阳:沈阳工业大学,2021.WU Lei. Research on multi-time scale low-carbon economic dispatch of integrated energy system[D].Shenyang:Shenyang University of Technology,2021.
- [4]崔杨,曾鹏,仲悟之,等.考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J].电力自动化设备,2021,41(3):10-17.CUI Yang,ZENG Peng,ZHONG Wuzhi,et al. Lowcarbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J].Electric Power Automation Equipment,2021,41(3):10-17.
- [5] WANG Y L,WANG Y D,HUANG Y J,et al.Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network[J].Applied Energy,2019,251:113410.
- [6]廖扬,蔡帜,邵佳扬,等.多区互联综合能源系统分散协调低碳经济调度[J].高电压技术,2023,49(1):138-146.LIAO Yang,CAI Zhi,SHAO Jiayang,et al.Decentralized coordinated low-carbon economic dispatch method for multi-regional interconnected integrated energy system[J].High Voltage Engineering,2023,49(1):138-146.
- [7]程耀华,张宁,康重庆,等.低碳多能源系统的研究框架及展望[J].中国电机工程学报,2017,37(14):4060-4069.CHENG Yaohua,ZHANG Ning,KANG Chongqing,et al. Research framework and prospects of low-carbon multiple energy systems[J].Proceedings of the CSEE,2017,37(14):4060-4069.
- [8]祝荣,任永峰,孟庆天,等.基于合作博弈的综合能源系统电-热-气协同优化运行策略[J].太阳能学报,2022,43(4):20-29.ZHU Rong,REN Yongfeng,MENG Qingtian,et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J].Acta Energiae Solaris Sinica,2022,43(4):20-29.
- [9] ZHANG N,HU Z G,DAI D H,et al.Unit commitment model in smart grid environment considering carbon emissions trading[J].IEEE Transactions on Smart Grid,2016,7(1):420-427.
- [10]张晓辉,刘小琰,钟嘉庆.考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划[J].中国电机工程学报,2020,40(19):6132-6142.ZHANG Xiaohui,LIU Xiaoyan,ZHONG Jiaqing. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electricthermal transfer load uncertainty[J]. Proceedings of the CSEE,2020,40(19):6132-6142.
- [11]陈锦鹏,胡志坚,陈嘉滨,等.考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J].高电压技术,2021,47(9):3094-3106.CHEN Jinpeng,HU Zhijian,CHEN Jiabin,et al.Optimal dispatch of integrated energy system considering laddertype carbon trading and flexible double response of supply and demand[J].High Voltage Engineering,2021,47(9):3094-3106.
- [12]陈锦鹏,胡志坚,陈颖光,等.考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J].电力自动化设备,2021,41(9):48-55.CHEN Jinpeng,HU Zhijian,CHEN Yingguang,et al.Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J].Electric Power Automation Equipment,2021,41(9):48-55.
- [13]崔杨,曾鹏,仲悟之,等.考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J].电力自动化设备,2021,41(3):10-17.CUI Yang,ZENG Peng,ZHONG Wuzhi,et al. Lowcarbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J].Electric Power Automation Equipment,2021,41(3):10-17.
- [14]颜宁,马广超,李相俊,等.基于季节性碳交易机制的园区综合能源系统低碳经济调度[J].中国电机工程学报,2024,44(3):918-932.YAN Ning,MA Guangchao,LI Xiangjun,et al. Lowcarbon economic dispatch of park integrated energy system based on seasonal carbon trading mechanism[J].Proceedings of the CSEE,2024,44(3):918-932.
- [15]刘晓峰,高丙团,李扬.博弈论在电力需求侧的应用研究综述[J].电网技术,2018,42(8):2704-2711.LIU Xiaofeng,GAO Bingtuan,LI Yang.Review on application of game theory in power demand side[J]. Power System Technology,2018,42(8):2704-2711.
- [16]王瑞,程杉,汪业乔,等.基于多主体主从博弈的区域综合能源系统低碳经济优化调度[J].电力系统保护与控制,2022,50(5):12-21.WANG Rui,CHENG Shan,WANG Yeqiao,et al.Lowcarbon and economic optimization of a regional integrated energy system based on a master-slave game with multiple stakeholders[J]. Power System Protection and Control,2022,50(5):12-21.
- [17]田福银,马骏,王灿,等.基于双层主从博弈的综合能源系统多主体低碳经济运行策略[J].中国电力,2022,55(11):184-193.TIAN Fuyin,MA Jun,WANG Can,et al. Multi-agent low-carbon and economy operation strategy of integrated energy system based on Bi-level master-slave game[J].Electric Power,2022,55(11):184-193.
- [18] ZENG A D,HAO S P,NING J,et al.Multiobjective optimized dispatching for integrated energy system based on hierarchical progressive parallel NSGA-II algorithm[J].Mathematical Problems in Engineering,2020,2020:6541782.
- [19] ZENG A D, HAO S P, NING J, et al. Research on realtime optimized operation and dispatching strategy for integrated energy system based on error correction[J].Energies,2020,13(11):2908.
- [20] ZENG A D,HAO S P,XU Q S,et al.A day-ahead optimal economic dispatch schedule for building CCHP system based on centralized energy storage infrastructure[J].Elektronika Ir Elektrotechnika,2018,24(4):53-58.
- [21] WANG L,SHI Z W,DAI W,et al.Two-stage stochastic planning for integrated energy systems accounting for carbon trading price uncertainty[J]. International Journal of Electrical Power&Energy Systems,2022,143:108452.
- [22]邓喜才,郭华华.两阶段主从博弈均衡解的存在性[J].经济数学,2009,26(4):50-53.DENG Xicai,GUO Huahua.Existence of the equilibrium solution of a two-stage leaders-followers gamee[J].Mathematics in Economics,2009,26(4):50-53.