基于热敏感电参数法的IGBT模块结温检测IGBT Module Junction Temperature Detection Based on Thermal-sensitive Electrical Parameters
马汉卿
MA Hanqing
摘要(Abstract):
IGBT(绝缘栅双极型晶体管)在电力系统、交通、军工、航天等诸多领域得到广泛应用,其可靠性关乎整个系统的稳定,而模块的结温是IGBT可靠性研究中至关重要的一环。但在实际工作电路中,其芯片封装在IGBT内部,要实现结温的实时检测非常困难。在此条件下,综合考虑各结温测量方法的可行性及测量的准确性后,选取饱和压降作为热敏感电参数来预测结温。利用饱和压降测试平台提取所需热敏感电参数,然后结合试验数据建立了基于误差反向传播算法的IGBT模块结温预测神经网络模型,构建热敏感电参数与结温的映射关系。避开IGBT模块的物理结构,实现了对IGBT在实际工况条件下结温的准确预测。
IGBT(Insulated Gate Bipolar Transistor) is widely used in power system, transportation, military,aerospace and many other fields. Its reliability is related to the stability of the whole system, and the junction temperature of the module is crucial in IGBT reliability research. However, in the actual working circuit, the chip is packaged inside the IGBT, and real-time detection of the junction temperature is very difficult. Under these conditions, considering the feasibility of the implementation of each junction temperature measurement method and the accuracy of the measurement, the saturation pressure drop is selected as the thermal parameter to predict the junction temperature. The saturation voltage drop test platform is used to extract the required thermal sensitive parameters, and then the back propagation(BP) based IGBT module junction temperature prediction neural network model is established based on the experimental data. The thermal sensitive electrical parameters and junction temperature are constructed to map the relationship. The physical structure of the IGBT module is avoided, and the accurate prediction of the junction temperature of the IGBT under actual working conditions is realized.
关键词(KeyWords):
IGBT;结温检测;神经网络;热敏感电参数;饱和压降
IGBT;junction temperature detection;neural network;thermal sensitive electrical parameters;saturation voltage drop
基金项目(Foundation): 国家自然科学基金资助项目(51477138)
作者(Author):
马汉卿
MA Hanqing
DOI: 10.19585/j.zjdl.201904003
参考文献(References):
- [1]陈明,胡安.IGBT结温模拟和探测方法比对研究[J].电机与控制学报,2011,15(12):44-50.
- [2]杨旭,周雒维,杜雄,等.绝缘栅双极型晶体管结温测量方法及其发展[J].电测与仪表,2012,49(554):7-12.
- [3]JI B,SONG X G,CAO W P,et al.In Situ diagnostics and prognostics of solder fatigue in IGBT modules for electric vehicle drives[J].IEEE Transactions on Power Electronics,2015,30(3):1535-1543.
- [4]DUPONT L,AVENAS Y,JEANNIN P O.Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters[J].IEEE Transactions on Industry Applications,2013,49(4):1599-1608.
- [5]刘宾礼,罗毅飞,肖飞,等.基于传热动力学作用特征的IGBT结温预测数学模型[J].电工技术学报,2017,32(12):79-87.
- [6]胡鸿志.基于新型温度传感器的数字温度计设计[J].电子测量与仪器学报,2011,25(8):741-743.
- [7]李武华,陈玉香,罗皓泽,等.大容量电力电子器件结温提取原理综述及展望[J].中国电工技术学报,2016,36(13):3546-3557.
- [8]陈娜,李鹏,江剑,等.中高压IGBT开关特性的遗传神经网络预测[J].电工技术学报,2013,25(2):239-254.
- [9]COVA P,CIAPPA M,FRANCESCHINI G,et al.Thermal characterization of IGBT power modules[J].Microelectronics Reliability,1997,37(1):1731-1734.
- [10]KUHN H,MERTENS A.On-line junction temperature measurement of IGBT based on temperature sensitive electrical parameters[C].13th European Conference on Power Electronics and Applications,EPE,2009:1-10.
- [11]JAKOPOVIC Z,BENCIC Z,KOLONIC F.Important properties of transient thermal impedance for MOS gated power semiconductors[C].Proceedings of the IEEE International Symposium on Industrial Electronics,ISIE,1999(2):574-578.
- [12]CASTELLAZZI A,MERMET-GUYENNET M,BARLINID,et al.New technique for the measurement of the static and of the transient junction temperature in IGBT devices under Operating conditions[J].Microelectronics Reliability,2006,46(9):1772-1777.
- [13]BRYANT A,YANG S,MAWBY P,et al.Investigation into IGBT dv/dt during turn-off and its temperature depen-dence[C].IEEE Transactions on Power Electronics,2011,26(10):3019-3031.
- [14]毛娅婕.绝缘栅双极型晶体管结温测量方法的研究[D].重庆:重庆大学,2013.
- [15]YONG-SEOK K,SEUNG-KI S.On-Line estimation of IG-BT junction temperature using on-state voltage drop[J].Ias Meeting the,1998,2(6):853-859.
- [16]GUSTAVO G,HAMILTON C,KERLEY R,et al.Control strategy of a multi-port grid connected direct DC PVcharging station for plug-in electric vehicles[C].IEEE Energy Conversion Congress and Exposition,2010:1173-1174.
- [17]刘大同,周建宝,郭力萌.锂离子电池健康评估和寿命预测综述[J].仪器仪表学报,2015,36(1):1-10.
- [18]汪涛,田杰,丁久东,等.高压大容量半导体阀设备技术研究[J].浙江电力,2018,37(11):1-9.
- [19]殷冠贤,朱铭炼,谢晔源,等.MMC阀子模块IGBT损耗与结温计算[J].电力工程技术,2018,37(3):129-133.
- [20]李兴建,王庆,刘洪德,等.一种柔性直流子模块测试装置的研制及应用[J].电力工程技术,2017,36(5):114-119.
- IGBT
- 结温检测
- 神经网络
- 热敏感电参数
- 饱和压降
IGBT - junction temperature detection
- neural network
- thermal sensitive electrical parameters
- saturation voltage drop