脱硫吸收塔深度除尘气液两相流数值模拟研究Numerical Simulation on Gas-liquid Two-phase flow in Deep Dust Removal of Desulphurization Absorption Tower
蒋楠,厉雄峰,葛春亮,刘文榉,李晨朗,王先董
JIANG Nan,LI Xiongfeng,GE Chunliang,LIU Wenju,LI Chenlang,WANG Xiandong
摘要(Abstract):
脱硫吸收塔内部流场较为复杂,涉及到气液固三相介质流动。CFD(计算流体动力学)数值模拟采用欧拉多相流模型和DPM(离散相模型),主要用于分析气液两相速度场及温度场的分布情况。研究结果表明:气液两相相对速度越大,液滴对颗粒物的惯性捕集效率就越高,有利于微米颗粒物在塔内的捕集;气液两相温差越大,液滴对颗粒物的热泳捕集效率就越高,有利于亚微米颗粒物在塔内的捕集;但相对速度和温差较大的区域,液滴体积分数较低。
Involving gas, liquid, and solid flow, the internal flow field of the FGD(flow gas desulfurization)absorption tower is complex. CFD(computational fluid dynamics) numerical simulation adopts Euler multiphase flow model and DPM(discrete phase model) to analyze velocity field and temperature field distribution of gas-liquid two-phase flow. The results show that the higher the relative velocity of gas-liquid flow is, the higher the inertial capture efficiency of droplets is, which is beneficial to the capture of micron particulates in the tower; the larger the temperature difference between gas and liquid phases is, the higher the thermophoresis capture efficiency of droplets is, which is beneficial to the capture of submicron particulates in the tower. However, the volume fraction of droplets is lower in regions with larger relative velocity and temperature differences.
关键词(KeyWords):
脱硫吸收塔;深度除尘;颗粒物;捕集效率;数值模拟;两相流
desulfurization absorption tower;deep dust removal;particulate;capture efficiency;numerical simulation;two-phase flow
基金项目(Foundation): 浙江省能源集团有限公司科技项目(ZN-KJ-17-037)
作者(Author):
蒋楠,厉雄峰,葛春亮,刘文榉,李晨朗,王先董
JIANG Nan,LI Xiongfeng,GE Chunliang,LIU Wenju,LI Chenlang,WANG Xiandong
DOI: 10.19585/j.zjdl.202106016
参考文献(References):
- [1]颜金培,杨林军,张霞,等.应用蒸汽相变机理脱除燃煤可吸入颗粒物实验研究[J].中国电机工程学报,2007,27(35):12-16.
- [2]GARC魱A-NIETO P J.Study of the evolution of aerosol emissions from coal-fired power plants due to coagulation,condensation,and gravitational settling and health impact[J].Journal of Environmental Management,2005,79(4):272-282.
- [3]中国环境保护产业协会脱硫脱硝委员会.脱硫脱硝行业2014年发展综述[J].中国环保产业,2015(12):4-23.
- [4]王小伟,韩芳,王卫.基于IPAT原理的区域大气污染物排放定量研究[J].生态经济,2019,35(11):176-181.
- [5]陈文华.燃煤电厂湿法脱硫筛板塔数值模拟研究[J].化工生产与技术,2018,24(6):23-27.
- [6]áLVAREZ-AYUSO E,QUEROL X,TOMáS A.Environmental impact of a coal combustion-desulphurisation plant:Abatement capacity of desulphurisation process and environmental characterisation of combustion by-products[J].Chemosphere,2006,65(11):2009-2017.
- [7]MEIJ R.Trace element behavior in coal-fired power plants[J].Fuel Processing Technology,1994,39(1/2/3):199-217.
- [8]中国环境保护产业协会电除尘委员会.燃煤电厂烟气超低排放技术[M].北京:中国电力出版社,2015.
- [9]MEIJ R,WINKEL B T.The emissions and environmental impact of PM10,and trace elements from a modern coalfired power plant equipped with ESP and wet FGD[J].Fuel Processing Technology,2004,85(6/7):641-656.
- [10]王珲,宋蔷,姚强,等.电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J].中国电机工程学报,2008,28(5):1-7.
- [11]温荣耀,刘克俭,魏进超.烧结烟气氨法脱硫塔气液两相流数值模拟[J].计算机辅助工程,2015,24(4):72-76.
- [12]MAJID A,YAN C Q,SUN Z N,et al.CFD simulation of dust particle removal efficiency of a venturi scrubber in CFX[J].Nuclear Engineering and Design,2013,256:169-177.
- [13]李立清,胡蔷,黄贵杰,等.环栅喷淋泡沫塔欧拉-离散相模型三相除尘模拟[J].中国电机工程学报,2012,32(5):68-77.
- [14]王飞,李彩亭,曾光明,等.伞罩型湿式脱硫除尘器气液固三相流数值模拟[J].化学工程,2009,37(4):31-34.
- [15]宋景慧,廖艳芬,李方勇,等.一种结合UDF新型火电厂脱硫塔脱硫效率的推算方法及其辅机负荷调整方法:CN105138718A[P].2015-12-09.
- [16]郝雅洁,刘嘉宇,袁竹林,等.除雾器内雾滴运动特性与除雾效率[J].化工学报,2014,65(12):4669-4677.
- [17]赵海鸣,廖小乐,谢信,等.复合型湿式除尘器脱硫除尘优化数值仿真[J].计算机仿真,2017,34(6):245-250.
- [18]孙晓阳,曹学文,谢振强,等.基于DSMC-CFD方法的气固两相流冲蚀预测研究[J].表面技术,2020,49(9):274-280.
- [19]余廷芳,陈润果,熊桂龙.撞击流气固两相流动中曳力模型的分析[J].科学技术与工程,2019,19(15):353-359.
- [20]马腾,周强.低雷诺数气固两相流中颗粒微观结构对颗粒受力的影响[C]//中国力学学会流体力学专业委员会.第十届全国流体力学学术会议论文摘要集.中国力学学会流体力学专业委员会:中国力学学会,2018:130-131.
- 脱硫吸收塔
- 深度除尘
- 颗粒物
- 捕集效率
- 数值模拟
- 两相流
desulfurization absorption tower - deep dust removal
- particulate
- capture efficiency
- numerical simulation
- two-phase flow