低频输电技术原理之三——M3C基本控制策略与子模块电压平衡控制Principles of Low Frequency Power Transmission Technology: Part 3-Basic Control Strategy for the M3C and Sub-module Voltage Balance Control
徐政,张哲任
XU Zheng,ZHANG Zheren
摘要(Abstract):
低频海底电缆输电技术在远海风电送出和海上风电场构网方面具有竞争优势,而M~3C(模块化多电平矩阵变换器)是低频输电技术的核心元件。针对M~3C的控制策略与子模块电压平衡控制展开研究:控制器仍然采用电压源换流器中常用的双环控制器结构,外环控制器设计与常规方法相同,内环控制器设计分成外部量控制与内部量控制分别进行。其中,内环外部量控制器设计在dq坐标系下进行,内环内部量控制器设计直接在αβ坐标系下进行。此外,针对全桥子模块的特点,通过定义3个特征量,提出一种简单有效、基于最近电平逼近且可满足子模块电压平衡控制要求的桥臂子模块投切策略。
Low-frequency submarine cable power transmission technology has competitive advantage in offshore wind power transmission and offshore wind farm network construction, and the modular multilevel matrix converter(M~3C) is the core component of low-frequency power transmission technology. This paper focuses on the M~3C control strategy and sub-module voltage balance control. The controller still uses the dual-loop controller structure commonly used in voltage source converters. The design of the outer loop controller is the same as the conventional method, and the inner loop controller design is divided into two parts: external variable control and internal variable control. Among them, the design of the outer variable controller is carried out in the dq coordinate system, and the design of the inner variable controller is carried out directly in theαβ coordinate system. In addition, according to the characteristics of the full-bridge sub-modules, by defining three characteristic variables, this paper proposes a simple and effective sub-module switching strategy that can meet the voltage balance control requirements of the sub-modules based on the nearest level modulation.
关键词(KeyWords):
低频输电;M~3C;全桥子模块;双环控制;电容电压平衡
low-frequency transmission;M~3C;full-bridge sub-module;dual-loop control;capacitor voltage balance
基金项目(Foundation):
作者(Author):
徐政,张哲任
XU Zheng,ZHANG Zheren
DOI: 10.19585/j.zjdl.202110004
参考文献(References):
- [1]BLAABJERG F,TEODORESCU R,LISERRE M,et al.Overview of control and grid synchronization for distributed power generation systems[J].IEEE Transactions on Industrial Electronics,2006,53(5):1398-1409.
- [2]KAMMERER F,KOLB J,BRAUN M.A novel cascaded vector control scheme for the Modular Multilevel Matrix Converter[C].37th Annual Conference on IEEE Industrial Electronics Society.Melbourne:IEEE,2011:1097-1102.
- [3]KAMMERER F,KOLB J,BRAUN M.Fully decoupled current control and energy balancing of the modular mul tilevel matrix converter[C].15th international conference on Power Electronics and Motion Control.Novi Sad,Serbia:IEEE,2012:LS2a.3-1-LS2a.3-8.
- [4]KAWAMURA W,AKAGI H.Control of the modular multilevel cascade converter based on triple-star bridgecells(MMCC-TSBC)for motor drives[C].IEEE Energy Conversion Congress and Exposition.Raleigh,USA:IEEE,2012:3506-3513.
- [5]KAWAMURA W,HAGIWARA M,AKAGI H.Control and experiment of a modular multilevel cascade converter based on triple-star bridge cells(MMCC-TSBC)[J].IEEE Transactions on Industry Applications,2014,50(5):3536-3548.
- [6]孟永庆,王健,李磊,等.基于双dq坐标变换的M~3C变换器的数学模型及控制策略研究[J].中国电机工程学报,2016,36(17):4702-4712.
- [7]FAN B R,WANG K,WHEELER P,et al.Branch current reallocation based energy balancing strategy for the modular multilevel matrix converter operating around equal frequency[J].IEEE Transactions on Power Electronics,2018,33(2):1105-1117.
- [8]KARWATZKI D,MERTENS A.Generalized control approach for a class of modular multilevel converter topologies[J].IEEE Transactions on Power Electronics,2018,33(4):2888-2900.
- [9]OU Z J,WANG G Z,ZHANG L H.Modular multilevel converter control strategy based on arm current control under unbalanced grid condition[J].IEEE Transactions on Power Electronics,2018,33(5):3826-3836.
- [10]FAN B R,WANG K,WHEELER P,et al.An optimal full frequency control strategy for the modular multilevel matrix converter based on predictive control[J].IEEE Transactions on Power Electronics,2018,33(8):6608-6621.
- [11]LIU S Q,SAEEDIFARD M,MANG X F.Analysis and control of the modular multilevel matrix converter under un balanced grid conditions[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2018,6(4):1979-1989.
- [12]李遥,许烈,李永东.模块化多电平矩阵变换器开关次数最优的拓扑连接策略[J].电工技术学报,2018,33(2):342-352.
- [13]刘健.模块化多电平矩阵变换器的控制策略研究[D].杭州:浙江大学,2019.
- [14]YAO W X,LIU J,LU Z Y.Distributed control for the modular multilevel matrix converter[J].IEEE Transactions on Power Electronics,2019,34(4):3775-3788.
- [15]DIAZ M,CARDANAS R,ESPINOZA M,et al.Vector control of a modular multilevel matrix converter operating over the full output-frequency range[J].IEEE Transactions on Industrial Electronics,2019,66(7):5102-5114.
- [16]王文杰,杨益平,杭丽君,等.应用于交-交变换的M~3C矩阵变换器系统控制策略[J].电力系统自动化,2020,44(12):186-192.
- [17]徐政,张哲任.低频输电技术基本理论之一———M~3C的数学模型与等效电路推导[J].浙江电力,2021,40(10):13-21.
- [18]徐政.柔性直流输电系统[M].2版.北京:机械工业出版社,2017.
- 低频输电
- M~3C
- 全桥子模块
- 双环控制
- 电容电压平衡
low-frequency transmission - M~3C
- full-bridge sub-module
- dual-loop control
- capacitor voltage balance