浙江电力

2024, v.43;No.336(04) 74-84

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于原型提取和聚类的光伏电站快速集群划分方法
A method for rapid cluster partitioning of photovoltaic plants based on prototype extraction and clustering

陈文进,杨晓丰,祁炜雯,王建军,赵峰,陈建国,王健
CHEN Wenjin,YANG Xiaofeng,QI Weiwen,WANG Jianjun,ZHAO Feng,CHEN Jianguo,WANG Jian

摘要(Abstract):

在光伏发电渗透率不断提高的背景下,针对光伏电站集群划分效果差、耗时长的问题,提出一种基于原型提取和聚类的光伏电站快速集群划分方法。首先,对光伏数据进行预处理,消除不同数据在量级与量纲上的差异性;然后,基于Pearson相关系数法筛选出对光伏出力影响较大的因素,然后通过设置随机抽样、k-means++和改进谱聚类3个环节,分别实现光伏电站的抽样、原型提取和原型聚类;继而基于枚举法和分层优化的思想,搜索上述环节的最优超参数;最后,设置不同场景进行算例对照,计算聚类内外指标和聚类时间指标,通过综合分析,验证了所提方法在解决大规模光伏电站快速聚类问题上的有效性。
The penetration rate of photovoltaic power generation keeps increasing. To address the issues of poor cluster partitioning and lengthy processing times for photovoltaic power station clusters, the paper proposes a method for rapid cluster partitioning method for photovoltaic(PV) plants based on prototype extraction and clustering. Firstly, photovoltaic data is preprocessed to eliminate differences in magnitude and dimensionality among data sets. Subsequently, influential factors on photovoltaic output power are identified using the Pearson correlation coefficient method. Random sampling, k-means++, and an improved spectral clustering method are then employed for sampling, prototype extraction, and prototype clustering of PV plants, respectively. Building upon an enumeration approach and hierarchical optimization, optimal hyperparameters for the aforementioned processes are determined. Finally, various scenarios are set up for case study comparisons, calculating both intra-cluster and inter-cluster indicators as well as clustering time metrics. Through comprehensive analysis, the effectiveness of the proposed method in addressing the rapid clustering for large-scale PV plants is validated.

关键词(KeyWords): 光伏电站;改进谱聚类算法;原型聚类;Pearson相关系数
photovoltaic power station;improved spectral clustering algorithm;prototype clustering;Pearson correlation coefficient

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211SX220001)

作者(Author): 陈文进,杨晓丰,祁炜雯,王建军,赵峰,陈建国,王健
CHEN Wenjin,YANG Xiaofeng,QI Weiwen,WANG Jianjun,ZHAO Feng,CHEN Jianguo,WANG Jian

DOI: 10.19585/j.zjdl.202404008

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享