浙江电力

2025, v.44;No.352(08) 15-23

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进蒙特卡洛算法的电动汽车充电负荷预测
EV charging load forecasting using an enhanced Monte Carlo simulation methods

刘瑞霖,余洋,刘鋆,李伟
LIU Ruilin,YU Yang,LIU Jun,LI Wei

摘要(Abstract):

针对传统蒙特卡洛模拟方法在电动汽车充电负荷预测中存在的概率分布拟合误差大及数据随机性强等问题,提出基于GMM(高斯混合模型)与GRA(灰色关联度分析)的改进方法。首先,利用GMM拟合充电行为特征的多峰分布特性,并通过BIC(贝叶斯信息准则)优化高斯分量个数,提升概率分布模型准确性。其次,应用GRA分析蒙特卡洛随机生成的充电行为数据组与原始数据的关联度,筛选最优数据组以降低极端值影响。最后,引入电池容量伽马分布模型表征不同类型电动汽车的异质性充电需求,进行电动汽车负荷预测。仿真结果表明:采用改进方法拟合的起始充电时间与起始充电SOC(荷电状态)相关系数最高达0.999 5,预测的总充电负荷预测峰值更贴合实际用电高峰时段,显著提升了预测精度。该方法通过融合GMM多峰拟合能力与GRA数据筛选机制,解决了传统方法中概率模型单一性和数据随机性问题,为电网负荷规划与动态平衡提供了技术支撑。
To address the limitations of conventional Monte Carlo simulation methods in electric vehicle(EV) charging load forecasting—particularly their large probability distribution fitting errors and strong data randomness—this paper proposes an enhanced approach integrating Gaussian mixture model(GMM) and grey relational analysis(GRA). First, GMM is employed to fit the multimodal distribution characteristics of charging behaviors, with the Bayesian information criterion(BIC) optimizing the number of Gaussian components to enhance probability distribution model accuracy. Second, GRA evaluates the relational degree between Monte Carlo-generated charging behavior datasets and the original data, screening optimal datasets to mitigate extreme value impacts. Finally, a Gamma distribution model of battery capacity is introduced to characterize heterogeneous charging demands across EV types. Simulation results demonstrate that the enhanced method achieves a correlation coefficient of up to 0.999 5 for initial charging time and initial state of charge(SOC) fitting, while the forecasted peak total charging load aligns closely with actual peak demand periods, significantly improving forecasting precision. By combining GMM's multimodal fitting capability with GRA's data screening mechanism, this method resolves the oversimplified probability models and data randomness inherent in traditional approaches, offering robust technical support for grid load planning and dynamic balancing.

关键词(KeyWords): 电动汽车;充电负荷预测;蒙特卡洛模拟;高斯混合模型;灰色关联度分析
EV;charging load forecasting;Monte Carlo simulation;GMM;GRA

Abstract:

Keywords:

基金项目(Foundation): 国家重点研发计划(2018YFE0122200)

作者(Author): 刘瑞霖,余洋,刘鋆,李伟
LIU Ruilin,YU Yang,LIU Jun,LI Wei

DOI: 10.19585/j.zjdl.202508002

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享