浙江电力

2021, v.40;No.299(03) 85-90

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于自然语言处理的故障应急事故报告自动生成研究
Research on Automatic Generation of Fault Emergency Report Based on Natural Language Processing

钱钢,金鑫,张锋明,朱峰,陈楠,陈武军,陈明强,汪力
QIAN Gang,JIN Xin,ZHANG Fengming,ZHU Feng,CHEN Nan,CHEN Wujun,CHEN Mingqiang,WANG Li

摘要(Abstract):

提出基于自然语言处理的故障应急事故报告自动生成方法:采集故障设备相关数据存储在数据库内,利用得分匹配法对数据进行缺失值借补处理;采用自然语言处理技术进行资料分析,将复合文档内的数据信息划分为单词与句子两个数据结构,对数据结构进行词性标注与句法分析,并利用一致度计算进行语义识别;依照资料分析结果与模板需求自动进行监测数据分析报告配置与生成。实验结果显示,该方法自动生成故障应急事故报告过程中,数据借补、词性标注与语义识别等过程具有较高精度,可有效规范报告编制内容。
The paper introduces an automation generation method of fault emergency report based on natural language processing(NLP): collect the relevant data of the faulty equipment and store it in the database, and use the score matching method to perform the missing value compensation processing on the data; use NLP technology for data analysis, and divide the data information in the compound document into two data structures of words and sentences; perform part-of-speech tagging and syntactic analysis on the data structure, and use the consistency calculation for semantic recognition; configure and generate monitoring data analysis reports according to the data analysis results and template requirements. Experimental results show that in the process of automatically generating fault emergency reports, the process of data borrowing, part-of-speech tagging and semantic recognition has high accuracy, which can effectively standardize the content of the report.

关键词(KeyWords): 自然语言;事故报告;自动生成;数据检验;词性标注;语义识别
natural language;emergency report;automatic generation;data inspection;part-of-speech tagging;semantic recognition

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211SX1900PT)

作者(Author): 钱钢,金鑫,张锋明,朱峰,陈楠,陈武军,陈明强,汪力
QIAN Gang,JIN Xin,ZHANG Fengming,ZHU Feng,CHEN Nan,CHEN Wujun,CHEN Mingqiang,WANG Li

DOI: 10.19585/j.zjdl.202103013

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享