基于Shapley值与全局和声搜索算法的电网投资组合策略A power grid investment portfolio strategy based on Shapley value and global harmony search algorithm
康朋,孙安黎,唐立波,刘子毅,张金良
KANG Peng,SUN Anli,TANG Libo,LIU Ziyi,ZHANG Jinliang
摘要(Abstract):
随着新型电力系统建设的加速推进,电网投资的力度持续攀升,企业须探索更加合理高效的电网投资策略,以实现最优的综合效益。为此,从经济、社会、环保和安全的维度出发,以电网项目投资的综合效益为优化目标,对投资组合策略进行研究。首先,应用Shapley值法对各效益函数的占比进行分摊,以呈现不同效益指标的特性。其次,在考虑投资能力、负荷需求等关键约束的基础上,设计了电网项目投资组合优化模型,并采用全局和声搜索算法进行求解。最后,构建算例对投资组合策略进行验证。算例结果表明,所提方法能够协助决策者在新形势下制定最优的电网投资策略。
With the accelerated advancement of the construction of new-type power systems and the increasing intensity of grid investment, power grid enterprises have to explore more rational and efficient investment strategies to achieve optimal comprehensive benefits. To this end, taking into account the economic, social, environmental, and safety dimensions and optimizing the comprehensive benefits of grid project investments, a study on investment portfolio strategies is conducted. Firstly, the Shapley value method is applied to allocate the proportions of various benefit functions, revealing the characteristics of different benefit indicators. Secondly, given the key constraints such as investment capacity and load demand, an optimal model for grid project investment portfolios is developed, and the global harmony search algorithm(GHSA) is employed for solution finding. Finally, a case study is constructed to investigate the investment portfolio strategy. The results demonstrate that the proposed approach can assist decision-makers in formulating optimal investment strategies in the new situation.
关键词(KeyWords):
电网投资组合;全局和声搜索算法;综合效益;Shapley值;投资策略
power grid investment portfolio;GHSA;comprehensive benefits;Shapley value;investment strategy
基金项目(Foundation): 国家自然科学基金项目(71774054)
作者(Author):
康朋,孙安黎,唐立波,刘子毅,张金良
KANG Peng,SUN Anli,TANG Libo,LIU Ziyi,ZHANG Jinliang
DOI: 10.19585/j.zjdl.202402006
参考文献(References):
- [1]谭忠富,谭彩霞,余雪,等.基于混合布谷鸟算法的智能电网多业务组合投资决策优化[J].智慧电力,2021,49(4):51-57.TAN Zhongfu,TAN Caixia,YU Xue,et al. Multibusiness portfolio investment decision optimization of smart grid based on hybrid cuckoo algorithm[J]. Smart Power,2021,49(4):51-57.
- [2]许晓敏,王琼,路妍.基于RWCS搜索算法的电网多项目组合投资优化决策研究[J].科技和产业,2019,19(10):69-76.XU Xiaomin,WANG Qiong,LU Yan.Optimal decisionmaking of multi-project portfolio investment for power grid based on cuckoo search algorithm optimized by stochastic weight[J].Science Technology and Industry,2019,19(10):69-76.
- [3]董军,马博.考虑社会效益的电网最优投资组合模型研究[J].运筹与管理,2010,19(4):131-135.DONG Jun,MA Bo.Study of an optimal portfolio model for electric grid projects with social benefits[J].Operations Research and Management Science,2010,19(4):131-135.
- [4]安磊.电网建设项目投资组合优化分析[J].陕西电力,2011,39(10):63-66.AN Lei. Probe into the investment portfolio optimization for grid construction project[J]. Shaanxi Electric Power,2011,39(10):63-66.
- [5]汤亚芳.基于年预期最大收益的配电网分年度投资决策优化模型[J].电网与清洁能源,2015,31(9):6-11.TANG Yafang.The research of an optimization model of distribution system annual investment decision based on the annual maximum expected profit[J]. Power System and Clean Energy,2015,31(9):6-11.
- [6]杨海峰,崔莹莹,崔巍.基于多目标函数的电网项目投资组合[J].电力科学与技术学报,2013,28(2):75-79.YANG Haifeng,CUI Yingying,CUI Wei. Research of multi-objective function based power grid project portfolio[J]. Journal of Electric Power Science and Technology,2013,28(2):75-79.
- [7]LI G Q,ZHAI X J,LI Y,et al.Multi-objective optimization operation considering environment benefits and economy based on ant colony optimization for isolated micro-grids[J].Energy Procedia,2016,104:21-26.
- [8]胡家声,郭创新,叶彬,等.离散粒子群优化算法在输电网络扩展规划中的应用[J].电力系统自动化,2004,28(20):31-36.HU Jiasheng,GUO Chuangxin,YE Bin,et al.Application of discrete particle swarm optimization to transmission network expansion planning[J]. Automation of Electric Power Systems,2004,28(20):31-36.
- [9]KANWAR N,GUPTA N,NIAZI K R,et al.Simultaneous allocation of distributed energy resource using improved particle swarm optimization[J]. Applied Energy,2017,185:1684-1693.
- [10]ZHANG W G,MEI Q,LU Q,et al.Evaluating methods of investment project and optimizing models of portfolio selection in fuzzy uncertainty[J].Computers&Industrial Engineering,2011,61(3):721-728.
- [11]李侠,仙锋.基于改进多目标蚁群算法在电网规划中的研究[J].自动化与仪器仪表,2019(5):105-107.LI Xia,XIAN Feng.Research on power network planning based on improved multi-objective ant colony algorithm[J].Automation&Instrumentation,2019(5):105-107.
- [12]李星辰,袁旭峰,李沛然,等.基于改进QPSO算法的微电网多目标优化运行策略[J].电力科学与工程,2020,36(12):22-29.LI Xingchen,YUAN Xufeng,LI Peiran,et al. Multiobjective optimal operation strategy of microgrid based on improved QPSO algorithm[J].Electric Power Science and Engineering,2020,36(12):22-29.
- [13]许晓敏.基于电力需求和投资能力的复杂电网优化投资决策研究[D].北京:华北电力大学,2017.XU Xiaomin. Optimal investment decision of complex power grid based on power demand and investment capacity[D]. Beijing:North China Electric Power University,2017.
- [14]欧阳婷,张会林,梁毅.基于NSGA-Ⅱ算法的孤岛微电网优化调度[J].软件导刊,2020,19(11):184-188.OUYANG Ting,ZHANG Huilin,LIANG Yi.Optimization scheduling of island micro-grid based on NSGA-Ⅱalgorithm[J].Software Guide,2020,19(11):184-188.
- [15]孙乐平,郭小璇,韩帅,等.增量配电放开背景下基于合作博弈的多主体投资比例优化策略[J].电网技术,2020,44(10):3916-3926.SUN Leping,GUO Xiaoxuan,HAN Shuai,et al. Multiagent investment proportion optimization based on cooperative game under incremental distribution liberalization[J].Power System Technology,2020,44(10):3916-3926.
- [16]熊浩清,张晓华,孟远景,等.基于技术成熟度理论的智能输电网多阶段投资决策模型[J].电网技术,2011,35(7):1-5.XIONG Haoqing,ZHANG Xiaohua,MENG Yuanjing,et al.A decision-making model of multi-stage investment for smart transmission grid based on technology readiness[J].Power System Technology,2011,35(7):1-5.
- [17]秦步文,张吉军,李岚,等.Shapley值在中国城市天然气需求量组合预测中的应用[J].天然气技术与经济,2022,16(2):50-55.QIN Buwen,ZHANG Jijun,LI Lan,et al.Application of Shapley value in the combination forecasting of city gas demand in China[J].Natural Gas Technology and Economy,2022,16(2):50-55.
- [18]王欣,谢文华,张利君.基于Shapley值组合模型的电力需求预测研究[J].内蒙古电力技术,2021,39(6):40-44.WANG Xin,XIE Wenhua,ZHANG Lijun. Research on power demand forecasting based on shapley value combination model[J].Inner Mongolia Electric Power,2021,39(6):40-44.
- [19]李翀,申洪涛,刘建华,等.基于Shapley组合模型及神经网络的电能表需求预测研究[J].电测与仪表,2021,58(9):187-193.LI Chong,SHEN Hongtao,LIU Jianhua,et al. Demand prediction of electricity meter based on Shapley combined model and neural networks[J].Electrical Measurement&Instrumentation,2021,58(9):187-193.
- [20]李思思.基于综合效益最大化的电网投资优化研究[D].北京:华北电力大学,2021.LI Sisi. Research on power grid investment optimization based on the maximization of integrated benefits[D].Beijing:North China Electric Power University,2021.
- [21]SRINIVASA RAO R,NARASIMHAM S V L,RAMALINGA RAJU M,et al. Optimal network reconfiguration of large-scale distribution system using harmony search algorithm[J]. IEEE Transactions on Power Systems,2011,26(3):1080-1088.
- [22]GEEM Z W,KIM J H,LOGANATHAN G V. A new heuristic optimization algorithm:harmony search[J].Simulation,2001,76(2):60-68.
- [23]邹锐.基于改进和声搜索算法的配电网研究与应用[D].西安:西安建筑科技大学,2020.ZOU Rui. Research and application on distribution network reconfiguration based on improved harmonic search algorithm[D].Xi'an:Xi'an University of Architecture and Technology,2020.
- [24]翟军昌,高立群,欧阳海滨,等.一种自适应全局和声搜索算法[J].控制与决策,2015,30(11):1953-1959.ZHAI Junchang,GAO Liqun,OUYANG Haibin,et al.An adaptive global harmony search algorithm[J].Control and Decision,2015,30(11):1953-1959.
- [25]雍龙泉,刘三阳,拓守恒,等.全局和声搜索算法求解具有2n个解的绝对值方程[J].小型微型计算机系统,2014,35(8):1861-1864.YONG Longquan,LIU Sanyang,TUO Shouheng,et al.Global harmony search algorithm for absolute value equation with 2n solutions[J]. Journal of Chinese Computer Systems,2014,35(8):1861-1864.
- [26]邹德旋,高立群,吴沛锋,等.一种全局和声搜索算法及在PID控制中的应用[J].东北大学学报(自然科学版),2010,31(11):1534-1537.ZOU Dexuan,GAO Liqun,WU Peifeng,et al. A global harmony search algorithm and its application to PID control[J]. Journal of Northeastern University(Natural Science),2010,31(11):1534-1537.
- 电网投资组合
- 全局和声搜索算法
- 综合效益
- Shapley值
- 投资策略
power grid investment portfolio - GHSA
- comprehensive benefits
- Shapley value
- investment strategy