基于HCM的光伏反窃电算法研究Research on HC-based PV Power Anti-theft Algorithm
陈海峰,应国德,曹杰,林超,潘成峰,金潮
CHEN Haifeng,YING Guode,CAO Jie,LIN Chao,PAN Chengfeng,JIN Chao
摘要(Abstract):
针对光伏窃电行为,设计了光伏反窃电算法。该算法首先将发电曲线分段处理,利用傅里叶级数对曲线进行初步处理;然后提取出时间、方差、增量等7项与数值大小本身无关的量,以及3项特定的发电量作为曲线特征,设计了聚类中心的选择方法,制订了正常、故障、窃电等3种聚类中心的参数;再根据各特征分量的生成原理,依次进行HCM(硬聚类);最后聚类至窃电类的样本,就是疑似窃电的用户。此外,在能够获取气象、配电网、设备基础信息的场景下,设计了更细粒度的分析算法。所设计算法已在浙江台州得到实际应用,并取得良好效果。
A photovoltaic power anti-theft detection algorithm is designed to fight against PV power theft. The algorithm segments the generation curve and preliminarily process it with Fourier series. Then, seven items,such as time, variance and increment that are unrelated to the value itself and three specific amounts of generation are extracted as the characteristics of the curve to design the selection method of the clustering center and establish parameters of three clustering centers such as normal, fault and theft. Then, according to the generation principle of each characteristic component, HCM(hard C-means) clustering is carried out successively; finally, the clustered theft samples are the theft suspects. Besides, a more fine-grained analysis algorithm is designed when the weather, distribution network and equipment can be obtained. The algorithm was already applied in Taizhou, and good results are obtained.
关键词(KeyWords):
光伏;窃电;傅里叶级数;特征;硬聚类
PV;power theft;fourier series;characteristic;HCM
基金项目(Foundation):
作者(Author):
陈海峰,应国德,曹杰,林超,潘成峰,金潮
CHEN Haifeng,YING Guode,CAO Jie,LIN Chao,PAN Chengfeng,JIN Chao
DOI: 10.19585/j.zjdl.202002013
参考文献(References):
- [1]郭立才,彭志炜,范强.电能计量及反窃电方法综述[J].高压电器,2010,46(5):86-88.
- [2]胡汉梅,汪元龙.窃电方式与防范措施的分析探讨[J].电测与仪表,2004,41(3):54-56.
- [3]詹乔松.电子式单相电能表防窃电原理及误接线分析[J].电测与仪表,2006,43(7):18-19.
- [4]胡林,颜运昌,黄晶,等.新型实时电网防窃电系统研究[J].电力需求侧管理,2006,8(2):20-22.
- [5]王颖琛,顾洁,金之俭.基于高维随机矩阵分析的窃电识别方法[J].现代电力,2017,34(6):71-78.
- [6]杨兰.配电管理系统实现防窃电功能[J].电力自动化设备,2002,22(1):84-85.
- [7]普云凡.智能电能表中窃电与防窃电技术研究[J].山东工业技术,2019,279(1):198.
- [8]孔晶,梁波,田晓.配电网反窃电措施的研究[J].低碳世界,2019,9(1):55-56.
- [9]张承智,肖先勇,郑子萱.基于实值深度置信网络的用户侧窃电行为检测[J].电网技术,2019,43(3):1083-1091.
- [10]陈雷,戴建华,汪雅.近10年长三角地区雷暴天气统计分析[J].暴雨灾害,2015,34(1):80-87.
- [11]王瑞金.浙江丽水地区分布式光伏发展现状及症结[J].现代商贸工业,2016,37(31):19-20.
- [12]光伏发电站设计规范:GB 50797—2012[S].北京:中国计划出版社,2012.
- [13]BULUT H,B譈Y譈KALACA O.Simple model for the generation of daily global solar-radiation data in Turkey[J].Applied Energy,2007,84(5):477-491.
- [14]王冬,王拓,王旗,等.一种面向需求响应资源的模糊聚类算法[J].中国电机工程学报,2018,38(14):4056-4063.
- [15]耿俊成,张小斐,周庆捷,等.基于局部离群点检测的低压台区用户窃电识别[J].电网与清洁能源,2019,35(11):30-36.
- [16]任燕康,杜立斐,宋剑,等.一种新型防窃电策略的研究与实现[J].四川电力技术,2019,42(1):83-89.
- [17]吕晨,侯聚峰,王一鸣,等.电力负荷管理系统防窃电改进及应用[J].内蒙古电力技术,2018,36(1):37-40.
- [18]邝应群,许阳.分布式光伏窃电多维时间尺度快速识别方法[J].大众用电,2019,34(11):30-31.
- [19]陈正华,曹叶章,邓杰,等.光伏电站并网反窃电技术研究[J].电力设备管理,2019(6):76-78.
- [20]郑征,刘刚,张琳娟,等.基于LSSVM的光伏发电三层筛选窃电识别方法[J].电力电子技术,2017,51(10):30-32.
- [21]胡宸,孙春顺,刘佳,等.考虑天气类型的光伏窃电识别方法[J].分布式能源,2017,2(4):13-19.
- [22]王晓琦.基于光伏出力计算模型的窃电监管技术研究[D].南京:东南大学,2016.
- [23]罗一凡.考虑分布式电源的电力客户信用等级评价及反窃电研究[D].上海:上海交通大学,2015.