基于改进DHNN模型的售电公司信用评价Credit evaluation of electricity sales companies based on an enhanced DHNN model
李源,蓝歆格,尹纯亚,商侨晏,王森,戚格瑞,葛祥一
LI Yuan,LAN Xinge,YIN Chunya,SHANG Qiaoyan,WANG Sen,QI Gerui,GE Xiangyi
摘要(Abstract):
为规范售电公司的市场行为,提升电力市场管理水平,需对售电公司开展信用评价。因此,基于Box-plot(箱形图)与正交化法,提出了一种改进的DHNN(离散型霍普菲尔德神经网络)信用评价模型。首先,分析梳理影响售电公司信用水平的因素,构建了包括基本信息、基础管理、合同管理、交易管理等11个指标在内的信用评价指标体系,并通过德尔菲法赋予指标权重。然后,对售电公司中指标异常数值进行处理,寻求其最优信用分值,实现对售电公司信用水平的客观评价。最后,通过算例验证所提模型的可行性,结果表明,该模型可对售电公司信用水平实现客观准确的评价。
To standardize the market conduct of electricity sales companies and elevate the power market management level, it is essential to conduct a credit evaluation of these companies. Therefore, based on Box-plot and orthogonalization methods, a credit evaluation model based on an enhanced discrete Hopfield neural network(DHNN) is proposed. Firstly, factors influencing the credit levels of electricity sales companies are analyzed, and a credit evaluation index system, which includes 11 indicators such as basic information, foundational management, contract management, and transaction management, is established. The weights for these indicators are determined using the Delphi method. Secondly, outliers in the indicators of electricity sales companies are addressed to derive optimal credit scores, enabling an objective assessment of their credit levels. Finally, the feasibility of the proposed model is verified through case studies. The results indicate that the model can objectively and accurately evaluate the credit levels of electricity sales companies.
关键词(KeyWords):
售电公司;电力市场;信用评价;德尔菲法;箱形图;离散型霍普菲尔德神经网络
electricity sales company;electricity market;credit evaluation;Delphi method;Box-plot;DHNN
基金项目(Foundation): 新疆维吾尔自治区重点研发计划(2022B01016-3);; 新疆维吾尔自治区青年科学基金(2022D01C85)
作者(Author):
李源,蓝歆格,尹纯亚,商侨晏,王森,戚格瑞,葛祥一
LI Yuan,LAN Xinge,YIN Chunya,SHANG Qiaoyan,WANG Sen,QI Gerui,GE Xiangyi
DOI: 10.19585/j.zjdl.202401009
参考文献(References):
- [1]王玉萍,刘磊,朱明,等.贵州电力交易市场主体信用评级模型研究[J].电力需求侧管理,2018,20(5):52-55.WANG Yuping,LIU Lei,ZHU Ming,et al.Research on credit rating model of players in Guizhou power trading market[J]. Power Demand Side Management,2018,20(5):52-55.
- [2]李东东,段维伊,周波,等.基于主成分分析的电力市场供应侧主体竞争潜力指数研究[J].电力系统保护与控制,2020,48(19):1-8.LI Dongdong,DUAN Weiyi,ZHOU Bo,et al.Competitive potential index of the supply side of the market entity based on principal component analysis[J].Power System Protection and Control,2020,48(19):1-8.
- [3]肖勇,陆文升,李云涛,等.城市配电网发展形态指标体系及其评估方法研究[J].电力系统保护与控制,2021,49(1):62-71.XIAO Yong,LU Wensheng,LI Yuntao,et al.Research on index system and its evaluation methods of urban distribution network development form[J].Power System Protection and Control,2021,49(1):62-71.
- [4]徐宏,林新,朱策,等.电力市场信用评级管理建设探讨[J].电网技术,2020,44(7):2582-2593.XU Hong,LIN Xin,ZHU Ce,et al.Crediting management in the electricity market[J]. Power System Technology,2020,44(7):2582-2593.
- [5]胡亚红,方豪达,江大川,等.基于AHP和k-means算法的电力用户信用度评价[J].浙江工业大学学报,2018,46(5):515-521.HU Yahong,FANG Haoda,JIANG Dachuan,et al.Credit evaluation of power consumers based on AHP and kmeans algorithms[J]. Journal of Zhejiang University of Technology,2018,46(5):515-521.
- [6]田竹肖,许晓敏,王董禹,等.大型现代电网企业经济活动的改进物元组合赋权综合评价模型[J].科学技术与工程,2021,21(10):4055-4062.TIAN Zhuxiao,XU Xiaomin,WANG Dongyu,et al.An improved combined weighting matter-element comprehensive evaluation model for economic activity of large modern grid enterprises[J].Science Technology and Engineering,2021,21(10):4055-4062.
- [7]杨铮宇,田园,李申章.基于主成分分析和层次分析的高压电力用户信用评价模型研究[J].云南大学学报(自然科学版),2020,42(增刊2):6-12.YANG Zhengyu,TIAN Yuan,LI Shenzhang. The research on comprehensive credit evaluation model of high voltage electric power users based on Principal Component Analysis and Analytic Hierarchy Process[J].Journal of Yunnan University(Natural Sciences Edition),2020,42(S2):6-12.
- [8]王玉萍,朱明.贵州电力市场主体市场化交易行为星级信用评价[J].电力大数据,2017,20(11):54-56.WANG Yuping,ZHU Ming.Star rating credit evaluation for transaction behavior in Guizhou power market subject[J].Power Systems and Big Data,2017,20(11):54-56.
- [9]张云雷,段光,俞静,等.基于KPCA-MEE的电力市场售电公司信用评价研究[J].中国电力,2018,51(7):128-135.ZHANG Yunlei,DUAN Guang,YU Jing,et al.Study on credit evaluation of power supply company in power market based on KPCA-MEE[J]. Electric Power,2018,51(7):128-135.
- [10]李荣,乔俊飞,韩红桂.一种改进型离散Hopfield学习算法[J].控制与决策,2014,29(2):241-245.LI Rong,QIAO Junfei,HAN Honggui. An improved learning algorithm for discrete Hopfield[J]. Control and Decision,2014,29(2):241-245.
- [11]王劲松,李宗育,徐晏琦.基于Hopfield网络的网络空间防御能力评估[J].控制工程,2017,24(2):263-270.WANG Jinsong,LI Zongyu,XU Yanqi.Assessment of cyberspace information defense capability based on hopfield neural network[J].Control Engineering of China,2017,24(2):263-270.
- [12]武昭妤,肖学山.基于离散型Hopfield神经网络的挤压AZ31B镁合金力学性能分类评价的研究[J].热加工工艺,2019,48(7):174-177.WU Zhaoyu,XIAO Xueshan.Study on mechanical properties classification of extruded AZ31B magnesium alloy based on discrete hopfield neural network[J].Hot Working Technology,2019,48(7):174-177.
- [13]王坦,杨森,齐晓慧,等.基于Hopfield网络的有人机/无人机协同作战效能评估[J].电光与控制,2021,28(10):80-84.WANG Tan,YANG Sen,QI Xiaohui,et al.Effectiveness evaluation of MAV/UAV cooperative operations based on hopfield neural network[J].Electronics Optics&Control,2021,28(10):80-84.
- [14] LI G Y,LI G D,ZHOU M. Comprehensive evaluation model of wind power accommodation ability based on macroscopic and microscopic indicators[J]. Protection and Control of Modern Power Systems,2019,4(1):1-12.
- [15]胡宗顺,黄之杰,朱倩,等.基于BP和Hopfield神经网络的航空肼燃料保障安全评价[J].火力与指挥控制,2017,42(11):121-125.HU Zongshun,HUANG Zhijie,ZHU Qian,et al.Research of aerial hydrazine fuel safety assessment based on BP and hopfield neural network[J]. Fire Control&Command Control,2017,42(11):121-125.
- 售电公司
- 电力市场
- 信用评价
- 德尔菲法
- 箱形图
- 离散型霍普菲尔德神经网络
electricity sales company - electricity market
- credit evaluation
- Delphi method
- Box-plot
- DHNN