基于电压连续性的三芯海缆非金属护套破损缺陷在线定位算法An online localization algorithm for non-metallic sheath defects in three-core submarine cables based on voltage continuity
余俊贤,黄伟校,戴栋,王瑛
YU Junxian,HUANG Weixiao,DAI Dong,WANG Ying
摘要(Abstract):
针对三芯海底电缆(以下简称“海缆”)的非金属护套破损缺陷在线定位问题,提出了一种基于电压连续性与参数优化的在线定位算法。首先,基于Pollaczek理论和F参数法建立了三芯海缆非金属护套破损缺陷理论模型。然后,提出了基于破损缺陷处电压连续性的在线定位算法,并结合粒子群优化算法减小理论模型与实际海缆之间的误差,从而提高算法定位精度。最后,以5 000 m长的220 kV三芯海缆为研究对象,在ATP-EMTP中搭建仿真模型,验证了该方法的灵敏性。结果表明,优化后的理论模型计算出的电压、电流数据与仿真平台数值几乎一致,能够精准定位海缆全长范围内的单相、两相、三相非金属护套破损缺陷,最大相对误差小于4.5%。随着过渡电阻的增加,缺陷变得更微弱,单相非金属护套破损缺陷的最大相对误差有所上升,但不超过6%;两相和三相非金属护套破损缺陷的相对误差略有增加。
To address the challenge of online localization of non-metallic sheath defects in three-core submarine cables(hereafter “ submarine cables”), this paper proposes an online localization algorithm based on voltage continuity and parameter optimization. First, a theoretical model for non-metallic sheath defects in submarine cables is developed using Pollaczek's theory together with the F-parameter method. Building on this, an online localization algorithm is introduced, which leverages voltage continuity at the damage point and employs particle swarm optimization(PSO) to minimize deviations between the theoretical model and actual submarine cable parameters, thereby enhancing localization accuracy. A 5,000-meter, 220 kV three-core cable is then simulated in ATP-EMTP to evaluate the algorithm's performance. The results demonstrate that the optimized theoretical model yields voltage and current data nearly identical to simulation values, enabling precise localization of single-phase, two-phase, and threephase non-metallic sheath defects across the entire cable length, with maximum relative errors below 4.5%. As transition resistance increases, defect severity decreases: the maximum relative error for single-phase defect increases slightly but remains below 6%, while relative errors for two-phase and three-phase defects also rise modestly.
关键词(KeyWords):
三芯海缆;多导体耦合分布参数模型;在线定位;粒子群优化算法
three-core submarine cable;multi-conductor coupled distributed parameter model;online localization;PSO
基金项目(Foundation): 国家自然科学基金(52377145)
作者(Author):
余俊贤,黄伟校,戴栋,王瑛
YU Junxian,HUANG Weixiao,DAI Dong,WANG Ying
DOI: 10.19585/j.zjdl.202601012
参考文献(References):
- [1]曾令诚,孟晨旭,罗海鑫,等.三芯电缆接头轴向温度反演模型及其材料参数敏感性分析[J].浙江电力,2024,43(8):94-103.ZENG Lingcheng,MENG Chenxu,LUO Haixin,et al.An inverse model for axial temperature in three-core cable joints and sensitivity analysis of material parameters[J].Zhejiang Electric Power,2024,43(8):94-103.
- [2]TANG Z H,ZHANG P,LIANG R,et al.Permanent fault location for three-core cable using multiconductor coupling model[J].IEEE Transactions on Power Delivery,2022,37(2):1120-1129.
- [3]张泽晋,陈彦伊,廖雁群,等.高压电缆外护套特征阻抗建模及破损检测方法[J].浙江电力,2024,43(9):78-87.ZHANG Zejin,CHEN Yanyi,LIAO Yanqun,et al.Characteristic impedance modeling and damage detection method for high-voltage cable sheath[J].Zhejiang Electric Power,2024,43(9):78-87.
- [4]SHI Q H,KANOUN O.A new algorithm for wire fault location using time-domain reflectometry[J].IEEE Sensors Journal,2014,14(4):1171-1178.
- [5]PENG N,LIU X Y,LIANG R,et al. Edge computing based fault sensing of the distribution cables based on timedomain analysis of grounding line current signals[J].IEEE Transactions on Power Delivery,2022,37(5):4404-4417.
- [6]ZHANG M,ZHAO K,YAN Y,et al.A double-terminal traveling-wave-based method using novel noncontact sensors for fault location in transmission cable lines[J].IEEE Access,2021,9:80797-80805.
- [7]XU Z H,SIDHU T S. Fault location method based on single-end measurements for underground cables[J].IEEE Transactions on Power Delivery,2011,26(4):2845-2854.
- [8]FILOMENA A D,RESENER M,SALIM R H,et al.Fault location for underground distribution feeders:an extended impedance-based formulation with capacitive current compensation[J]. International Journal of Electrical Power&Energy Systems,2009,31(9):489-496.
- [9]YANG X,CHOI M S,LEE S J,et al.Fault location for underground power cable using distributed parameter approach[J].IEEE Transactions on Power Systems,2008,23(4):1809-1816.
- [10]International Electrotechnical Commission. Electrical installations in ships-Part 350:General construction and test methods of power, control and instrumentation cables for shipboard and offshore applications:IEC 60092—350:2014[S].Geneva:International Electrotechnical Commission,2014.
- [11]CIGRE Working Group B1.37.Guide for the operation of self-contained fluid filled cable systems:Technical Brochure 652[R].Paris:CIGRE,2016.
- [12]CIGRE Working Group B1.52.Fault location on land and submarine links(AC&DC):Technical Brochure 773[R].Paris:CIGRE,2019.
- [13]CIGRE Working Group B1.50.Sheath bonding systems of AC transmission cables-design,testing,and maintenance:Technical Brochure 797[R].Paris:CIGRE,2020.
- [14]AMETANI A,OHNO T,NAGAOKA N.Cable system transients[M].Singapore:John Wiley&Sons,2015.
- [15]王惠泽,曹书豪,冯谟可,等.考虑参数频变特性的电力电缆改进贝杰龙模型[J].中国电机工程学报,2024,44(9):3722-3732.WANG Huize,CAO Shuhao,FENG Moke,et al. Improved bergeron model of power cable considering parameter frequency-dependent characteristics[J]. Proceedings of the CSEE,2024,44(9):3722-3732.
- [16]余俊贤,王瑛,戴栋,等.三芯电缆的故障定位方法、装置、设备及存储介质:202311352631.5[P]2023-12-19.
- [17]HU Y X,CHEN L,LIU Y,et al.Principle and verification of an improved algorithm for cable fault location based on complex reflection coefficient spectrum[J].IEEE Transactions on Dielectrics and Electrical Insulation,2023,30(1):308-316.
- [18]李云阁.ATP-EMTP及其在电力系统中的应用[M].北京:中国电力出版社,2016.
- [19]唐泽华.融合屏蔽地线电流稳态特征的配电三芯铠装电缆故障定位[D].徐州:中国矿业大学,2022.TANG Zehua. Shield-grounding-wire current steady-state feature-based fault location for distribution grid three-core armored cable[D]. Xuzhou:China University of Mining and Technology,2022.
- [20]池梓斌,夏成军,杨明嘉.基于参数优化VMD和TET的柔直线路单端故障测距方法[J].电力系统保护与控制,2024,52(4):1-11.CHI Zibin,XIA Chengjun,YANG Mingjia. Single-end fault location method for MMC-HVDC transmission lines based on parameter-optimized VMD and TET[J].Power System Protection and Control,2024,52(4):1-11.
- [21]杨明嘉,夏成军,池梓斌,等.基于参数修正的交叉互联电缆单相故障测距方法[J].电力自动化设备,2024,44(8):218-224.YANG Mingjia,XIA Chengjun,CHI Zibin,et al.Singlephase fault location method for cross-connected cable based on parameter modification[J].Electric Power Automation Equipment,2024,44(8):218-224.
- [22]WANG D S,TAN D P,LIU L.Particle swarm optimization algorithm:an overview[J].Soft Computing,2018,22(2):387-408.
- [23]LIU H R,CUI J C,LU Z D,et al.A hierarchical simple particle swarm optimization with mean dimensional information[J].Applied Soft Computing,2019,76:712-725.
- [24]吴浩然.改进粒子群优化算法及应用[D].合肥:合肥工业大学,2022.WU Haoran. Improved particle swarm optimization algorithm and its application[D]. Hefei:Hefei University of Technology,2022.
- [25]刘君威.基于粒子群优化的点云配准算法研究[D].西安:西安电子科技大学,2022.LIU Junwei. Research on point cloud registration algorithm based on particle swarm optitimization[D].Xi’an:Xidian University,2022.
- [26]李岩,王毛桃,乔俊杰,等.单芯海缆两端环流不匹配问题及评价方法研究[J].电网技术,2024,48(4):1770-1779.LI Yan,WANG Maotao,QIAO Junjie,et al.Mismatched circulation conditions and evaluation of single-core submarine cables[J].Power System Technology,2024,48(4):1770-1779.
- [27]WANG W Y,CHENG J M,SUN Y,et al.Effect of seawater immersion on power frequency over voltage calculation of AC three-core submarine cable[J].IOP Conference Series:Materials Science and Engineering,2020,740(1):012094.