基于EWOA-RBFNN的光储VSG自适应控制策略Adaptive control strategy for VSG parameters in photovoltaic storage systems based on EWOA-RBF neural network
张浩雅,邵文权,吴成锋,杨鹏
ZHANG Haoya,SHAO Wenquan,WU Chengfeng,YANG Peng
摘要(Abstract):
电网功率扰动引发转动惯量与阻尼系数动态耦合失调,导致传统光储VSG(虚拟同步发电机)存在有功超调及频率波动大的问题。提出一种基于EWOA(增强鲸鱼优化算法)与RBFNN(径向基函数神经网络)的光储VSG惯量与阻尼自适应控制策略。结合VSG数学模型与小信号模型,分析惯量及阻尼参数的调节方法及其取值范围。通过引入动态参数调整及精英个体指导机制,基于EWOA实现对RBF(径向基函数)权值的全局优化,提升网络对非线性系统的逼近精度与泛化能力。优化后的RBFNN可实时调节VSG惯量与阻尼参数,实现系统动态特性的自适应控制。仿真验证表明,该策略能够有效抑制有功超调及频率偏差,尽管频率波动略有增加,但频率超调量控制在0.5%以内,满足系统运行要求;同时有效缩短系统稳定时间,提升暂态响应性能和系统动态稳定性。
Power disturbances in the grid induce dynamic coupling imbalances between inertia and damping coefficients, resulting in active power overshoot and significant frequency fluctuations in conventional photovoltaicstorage Virtual Synchronous Generators(VSGs). This paper proposes an adaptive control strategy for inertia and damping of photovoltaic-storage VSGs based on an Enhanced Whale Optimization Algorithm(EWOA) combined with a Radial Basis Function(RBF) neural network. By integrating the VSG mathematical and small-signal models, the methods for adjusting inertia and damping parameters and their feasible ranges are analyzed. The EWOA enhances global optimization of RBF weights through dynamic parameter adaptation and elite individual guidance mechanisms, thereby improving the network's approximation accuracy and generalization capability for nonlinear systems. The optimized RBF neural network dynamically adjusts the VSG's inertia and damping parameters in real time to achieve adaptive control of system dynamic characteristics. Simulation results demonstrate that the proposed strategy effectively suppresses active power overshoot and frequency deviation; although frequency fluctuation slightly increases, the frequency overshoot remains within 0.5%, meeting operational requirements. Moreover, the approach significantly shortens system settling time and enhances transient response performance and overall dynamic stability.
关键词(KeyWords):
虚拟同步发电机;虚拟惯量;虚拟阻尼系数;RBFNN;EWOA;自适应控制
virtual synchronous generator;virtual inertia;virtual damping coefficient;RBF neural network;WOA whale optimization algorithm;adaptive control
基金项目(Foundation): 国家自然科学基金(52407137);; 新型电力系统运行与控制全国重点实验室开放基金(SKLD24KM03)
作者(Author):
张浩雅,邵文权,吴成锋,杨鹏
ZHANG Haoya,SHAO Wenquan,WU Chengfeng,YANG Peng
DOI: 10.19585/j.zjdl.202601008
参考文献(References):
- [1]张智刚,康重庆.碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报,2022,42(8):2806-2819.ZHANG Zhigang,KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE,2022,42(8):2806-2819.
- [2]ZHONG Q C,WEISS G.Synchronverters:inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics,2011,58(4):1259-1267.
- [3]傅国斌,孙海斌,王海亭,等.含高渗透率新能源电力系统多目标无功优化方法[J].高压电器,2025,61(5):291-301.FU Guobin,SUN Haibin,WANG Haiting,et al. Multiobjective reactive power optimization method for new energy power systems with high permeability[J].High Voltage Apparatus,2025,61(5):291-301.
- [4]宋嘉雯,王琦,王亚伦,等.计及负荷等效惯量的新型电力系统机组组合安全优化方法[J].电力建设,2025,46(9):111-119.SONG Jiawen,WANG Qi,WANG Yalun,et al.Security optimization method for unit commitment in new power systems considering load equivalent inertia[J]. Electric Power Construction,2025,46(9):111-119.
- [5]桑顺,王亚新,陆平,等.基于模糊控制的构网型双馈风电机组的频率支撑控制[J].智慧电力,2025,53(12):131-139.SANG Shun,WANG Yaxin,LU Ping,et al. Frequency support control of grid-forming doubly-fed induction generator based on fuzzy logic[J]. Smart Power,2025,53(12):131-139.
- [6]李峰,秦文萍,任春光,等.混合微电网交直流母线接口变换器虚拟同步电机控制策略[J].中国电机工程学报,2019,39(13):3776-3788.LI Feng,QIN Wenping,REN Chunguang,et al. Virtual synchronous motor control strategy for interfacing converter in hybrid AC/DC micro-grid[J].Proceedings of the CSEE,2019,39(13):3776-3788.
- [7]王旭,贾彦,郭强,等.基于神经网络的GFVSG多参数协同自适应优化控制策略[J].高压电器,2025,61(11):98-108.WANG Xu,JIA Yan,GUO Qiang,et al.Neural networkbased multi-parameter collaborative adaptive optimization control strategy for GFVSG[J].High Voltage Apparatus,2025,61(11):98-108.
- [8]杨师旋,崔双喜.采用虚拟同步发电机技术的智能建筑辅助调频[J].电力建设,2024,45(6):130-139.YANG Shixuan,CUI Shuangxi.Auxiliary frequency regulation for intelligent buildings using virtual synchronous generator technology[J]. Electric Power Construction,2024,45(6):130-139.
- [9]王杨,廖鹏,杨孟凌,等.多类型无功控制下VSG的有功响应特性分析与功率耦合强度量化[J].智慧电力,2025,53(10):61-69.WANG Yang,LIAO Peng,YANG Mengling,et al.Analysis of active power response characteristics and quantification of power coupling strength in VSG under multiple types of reactive power control[J].Smart Power,2025,53(10):61-69.
- [10]盛万兴,吕志鹏,崔健,等.虚拟同步机运行区域计算与参数分析[J].电网技术,2019,43(5):1557-1565.SHENG Wanxing,L??Zhipeng,CUI Jian,et al.Operation area calculation and parameter analysis of virtual synchronous generator[J]. Power System Technology,2019,43(5):1557-1565.
- [11]季亮,俞紫琳,李博通,等.基于提升距离保护适应性的改进VSG控制策略研究[J].智慧电力,2024,52(6):9-15.JI Liang,YU Zilin,LI Botong,et al.Improved VSG control strategy to enhance the adaptability of distance protection[J].Smart Power,2024,52(6):9-15.
- [12]王素娥,狄嘉,郝鹏飞,等.基于测速反馈的VSG惯量和阻尼自适应控制策略[J].智慧电力,2025,53(3):53-61.WANG Sue,DI Jia,HAO Pengfei,et al.Speed feedback based adaptive control strategy for VSG inertia and damping[J].Smart Power,2025,53(3):53-61.
- [13]兰征,王海晖,曾进辉,等.引入分散互阻尼暂态补偿的多VSG系统振荡抑制策略[J].智慧电力,2024,52(10):1-8.LAN Zheng,WANG Haihui,ZENG Jinhui,et al.Oscillation suppression strategy for multi-VSG system with decentralized mutual damping transient compensation[J].Smart Power,2024,52(10):1-8.
- [14]ALIPOOR J,MIURA Y,ISE T.Power system stabilization using virtual synchronous generator with alternating moment of inertia[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2015,3(2):451-458.
- [15]宋琼,张辉,孙凯,等.多微源独立微网中虚拟同步发电机的改进型转动惯量自适应控制[J].中国电机工程学报,2017,37(2):412-424.SONG Qiong,ZHANG Hui,SUN Kai,et al. Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units[J].Proceedings of the CSEE,2017,37(2):412-424.
- [16]张涛,郑家琪,王福东,等.基于模糊控制的VSG转动惯量自适应算法[J].电力电子技术,2021,55(1):40-44.ZHANG Tao,ZHENG Jiaqi,WANG Fudong,et al.VSG moment of inertia adaptive algorithm based on fuzzy control[J].Power Electronics,2021,55(1):40-44.
- [17]曾国辉,廖鸿飞,赵晋斌,等.直流微网双向DC/DC变换器虚拟惯量和阻尼系数自适应控制策略[J].电力系统保护与控制,2022,50(6):65-73.ZENG Guohui,LIAO Hongfei,ZHAO Jinbin,et al.A selfadaptive control strategy of virtual inertia and a damping coefficient for bidirectional DC-DC converters in a DC microgrid[J].Power System Protection and Control,2022,50(6):65-73.
- [18]卢盛阳,朱钰,陈涛,等.基于改进粒子群算法的阻尼惯量自适应控制策略[J].电力系统及其自动化学报,2024,36(4):68-75.LU Shengyang,ZHU Yu,CHEN Tao,et al.Adaptive control strategy of damping inertia based on improved particle swarm optimization algorithm[J].Proceedings of the CSUEPSA,2024,36(4):68-75.
- [19]邱彬,胡善华,苏小平,等.基于SOC特性边界条件下VSG在光伏发电中最优控制策略研究[J].电子测量与仪器学报,2019,33(9):33-40.QIU Bin,HU Shanhua,SU Xiaoping,et al. Research on optimal control strategy of VSG in photovoltaic generation based on SOC characteristic boundary condition[J].Journal of Electronic Measurement and Instrumentation,2019,33(9):33-40.
- [20]刘维莎,石荣亮,周其锋,等.基于BP神经网络的储能VSG参数自适应优化策略[J].电子测量技术,2024,47(23):42-49.LIU Weisha,SHI Rongliang,ZHOU Qifeng,et al.Parameter adaptive optimization strategy of energy storage VSG based on BP neural network[J].Electronic Measurement Technology,2024,47(23):42-49.
- [21]赵南南,乔鹏博,周鹏飞,等.基于改进灰狼算法的VSG参数自适应控制策略[J].电力科学与工程,2024,40(9):33-43.ZHAO Nannan,QIAO Pengbo,ZHOU Pengfei,et al.Adaptive VSG parameter control strategy based on improved grey wolf optimization[J].Electric Power Science and Engineering,2024,40(9):33-43.
- [22]杨旭红,姚凤军,郝鹏飞,等.基于改进型RBF神经网络的VSG转动惯量自适应控制[J].电测与仪表,2021,58(2):112-117.YANG Xuhong,YAO Fengjun,HAO Pengfei,et al.Adaptive inertia control for VSG based on improved RBF neural network[J].Electrical Measurement&Instrumentation,2021,58(2):112-117.
- [23]高子轩,赵晋斌,杨旭红,等.基于RBF的VSG转动惯量和阻尼系数自适应控制策略[J].电力建设,2022,43(9):132-139.GAO Zixuan,ZHAO Jinbin,YANG Xuhong,et al.RBFbased adaptive control strategy of rotational inertia and damping coefficient for VSG[J].Electric Power Construction,2022,43(9):132-139.
- [24]DING X K,CAO J W.Deep and reinforcement learning in virtual synchronous generator:a comprehensive review[J].Energies,2024,17(11):2620.
- [25]吕志鹏,盛万兴,钟庆昌,等.虚拟同步发电机及其在微电网中的应用[J].中国电机工程学报,2014,34(16):2591-2603.L??Zhipeng,SHENG Wanxing,ZHONG Qingchang,et al. Virtual synchronous generator and its applications in micro-grid[J].Proceedings of the CSEE,2014,34(16):2591-2603.
- [26]杨萍.基于VSG的光伏储能并网控制策略研究[D].贵阳:贵州大学,2023.YANG Ping.Research on grid-connected control strategy for photovoltaic energy storage systems based on virtual synchronous generator[D].Guiyang:Guizhou University,2023.
- [27]DRIESEN J,VISSCHER K.Virtual synchronous generators[J].IEEE,2008.
- [28]吴恒,阮新波,杨东升,等.虚拟同步发电机功率环的建模与参数设计[J].中国电机工程学报,2015,35(24):6508-6518.WU Heng,RUAN Xinbo,YANG Dongsheng,et al.Modeling of the power loop and parameter design of virtual synchronous generators[J]. Proceedings of the CSEE,2015,35(24):6508-6518.
- [29]柴杰,江青茵,曹志凯.RBF神经网络的函数逼近能力及其算法[J].模式识别与人工智能,2002,15(3):310-316.CHAI Jie,JIANG Qingyin,CAO Zhikai.Function approximation capability and algorithms of rbf neural networks[J].Pattern Recognition and Artificial Intelligence,2002,15(3):310-316.
- [30]RUDER S.An overview of gradient descent optimization algorithms[DB/OL]. 2016. https://arxiv. org/abs/1609.04747v1.
- 虚拟同步发电机
- 虚拟惯量
- 虚拟阻尼系数
- RBFNN
- EWOA
- 自适应控制
virtual synchronous generator - virtual inertia
- virtual damping coefficient
- RBF neural network
- WOA whale optimization algorithm
- adaptive control