基于平准化度电成本的海上风电分频输电系统经济性分析Economic analysis of fractional frequency transmission system for offshore wind farm based on levelized cost of electricity
齐磊,李志川,孙兆恒,肖石,王皓,李哲,陈娟
QI Lei,LI Zhichuan,SUN Zhaoheng,XIAO Shi,WANG Hao,LI Zhe,CHEN Juan
摘要(Abstract):
在海上风电大规模、中远化的新发展趋势下,对分频输电系统与其他输电系统的经济性进行了对比分析。基于分频输电系统全生命周期,建立了综合考虑初始资源投入、运行损耗、日常维护、废置处理和应缴税金的分频输电系统平准化度电成本经济性评估模型。以某海上风电场为例,分析了分频输电的经济区间和多场景下经济性变化趋势,结果表明:对于500 MW海上风电场,其经济区间在80~250 km,经济区间较为稳定且在多场景下经济性均优于传统输电系统。
In the context of large-scale and medium-and-long distance offshore wind power development, a comprehensive economic comparison has been made between fractional frequency transmission system(FFTS) and other transmission systems. An economic evaluation model based on the levelized cost of electricity(LCOE) for the FFTS system. This model takes into account the lifecycle, initial resource investment, operational losses, routine maintenance, decommissioning costs, and tax liabilities. By using an offshore wind farm as a case study, the paper analyzes the economic intervals of the FFTS and economic variability under various scenarios. The findings reveal that, for a 500 MW offshore wind farm, the economic interval extends from 80 to 250 kilometers; moreover, this range exhibits a notable degree of stability and demonstrates superior economic viability in contrast to traditional transmission systems across multiple scenarios.
关键词(KeyWords):
海上风电;分频输电系统;平准化度电成本;全生命周期;经济区间
offshore wind power;FFTS;LCOE;life cycle;economic interval
基金项目(Foundation): 河北省重点研发计划(20310103D)
作者(Author):
齐磊,李志川,孙兆恒,肖石,王皓,李哲,陈娟
QI Lei,LI Zhichuan,SUN Zhaoheng,XIAO Shi,WANG Hao,LI Zhe,CHEN Juan
DOI: 10.19585/j.zjdl.202406011
参考文献(References):
- [1] Global Wind Energy Council. Global Wind Report 2022[EB/OL].[2023-7-20]. https://gwec. net/global-windreport-2022/#download,2022.
- [2]徐进,韦古强,金逸,等.江苏如东海上风电场并网方式及经济性分析[J].高电压技术,2017,43(1):74-81.XU Jin,WEI Guqiang,JIN Yi,et al.Economic analysis on integration topology of Rudong offshore wind farm in Jiangsu Province[J]. High Voltage Engineering,2017,43(1):74-81.
- [3] ZHAO B Y,WANG X F,WANG X L,et al.Upgrading transmission capacity by altering HVAC into fractional frequency transmission system[J]. IEEE Transactions on Power Delivery,2022,37(5):3855-3862.
- [4] LAURIA S,SCHEMBARI M,PALONE F,et al.Very long distance connection of gigawatt-size offshore wind farms:extra high-voltage AC versus high-voltage DC cost comparison[J].IET Renewable Power Generation,2016,10(5):713-720.
- [5]李贤育,姚良忠,程帆,等.海上风电多类型直流送出系统拓扑经济性分析[J].全球能源互联网,2021,4(5):476-485.LI Xianyu,YAO Liangzhong,CHENG Fan,et al. Economic analysis of multi-type DC system topologies for offshore wind power transmission[J].Journal of Global Energy Interconnection,2021,4(5):476-485.
- [6]王鑫,王海云,王维庆.大规模海上风电场电力输送方式研究[J].电测与仪表,2020,57(22):55-62.WANG Xin,WANG Haiyun,WANG Weiqing.Research on power transmission mode of large-scale offshore wind farms[J]. Electrical Measurement&Instrumentation,2020,57(22):55-62.
- [7]王锡凡,刘沈全,宋卓彦,等.分频海上风电系统的技术经济分析[J].电力系统自动化,2015,39(3):43-50.WANG Xifan,LIU Shenquan,SONG Zhuoyan,et al.Technical and economical analysis on offshore wind power system integrated via[J]. Automation of Electric Power Systems,2015,39(3):43-50.
- [8]黄明煌,王秀丽,刘沈全,等.分频输电应用于深远海风电并网的技术经济性分析[J].电力系统自动化,2019,43(5):167-174.HUANG Minghuang,WANG Xiuli,LIU Shenquan,et al.Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems,2019,43(5):167-174.
- [9]段子越,孟永庆,宁联辉,等.柔性分频输电系统的构建规划及关键设备技术综述[J].电力系统自动化,2023,47(10):205-215.DUAN Ziyue,MENG Yongqing,NING Lianhui,et al.Review on construction planning and key equipment technology of flexible fractional frequency transmission system[J]. Automation of Electric Power Systems,2023,47(10):205-215.
- [10] Dependability management-Part 3-3:Application guideLife cycle costing:IEC 60300-3-3 Ed.2.0 en:2004[S].International Electrotechnical Commission[iec],2004.
- [11]刘喜梅,崔阳,董建明,等.基于风电机组可靠性的风电场平准化成本模型研究[J].太阳能学报,2022,43(10):304-311.LIU Ximei,CUI Yang,DONG Jianming,et al.Research on levelized cost model of wind farms based on wind turbine reliability[J].Acta Energiae Solaris Sinica,2022,43(10):304-311.
- [12]宋冬然,梁梓昂,夏鄂,等.风电全生命周期成本建模与经济分析综述[J].热力发电,2023,52(3):1-12.SONG Dongran,LIANG Ziang,XIA E,et al.Overview of wind power life-cycle cost modeling and economic analysis[J].Thermal Power Generation,2023,52(3):1-12.
- [13]王栋杰,李宾斯,周思恺.新能源项目LCOE度电成本与IRR内部收益率的等效性分析[J].南方能源建设,2023,10(2):101-109.WANG Dongjie,LI Binsi,ZHOU Sikai. Equivalence analysis of LCOE and IRR for new energy projects[J].Southern Energy Construction,2023,10(2):101-109.
- [14] GONZALEZ-RODRIGUEZ A G. Review of offshore wind farm cost components[J].Energy for Sustainable Development,2017,37:10-19.
- [15]能源行业风电标准化技术委员会.海上风电场工程概算定额:NB/T 31008—2011[M].北京:中国电力出版社,2011.
- [16]彭穗,余浩,许亮,等.海上风电场输电方式研究[J].电力勘测设计,2021(11):68-75.PENG Sui,YU Hao,XU Liang,et al.Research on power transmission scheme for offshore wind farms[J]. Electric Power Survey&Design,2021(11):68-75.
- [17]汪大洋,刘宗烨,李沛,等.基于模块化多电平矩阵换流器的海上风电分频系统经济性分析[J].分布式能源,2018,3(2):16-22.WANG Dayang,LIU Zongye,LI Pei,et al. Economic analysis of fractional frequency transmission system for offshore wind farm based on modular multilevel matrix converter[J].Distributed Energy,2018,3(2):16-22.
- [18]张昭丞,郭佳田,诸浩君,等.基于全生命周期成本的海上风电并网方案优选分析[J].电力系统保护与控制,2017,45(21):51-57.ZHANG Zhaocheng,GUOJIA Tian,ZHU Haojun,et al.Optimization scheme of offshore wind power grid connection based on LCC model[J]. Power System Protection and Control,2017,45(21):51-57.
- [19]王晓理,章帆,杨凤志,等.基于平价上网的风电场经济性分析[J].船舶工程,2022,44(增刊2):149-155.WANG Xiaoli,ZHANG Fan,YANG Fengzhi,et al.Economic analysis of wind farm based on parity access[J].Ship Engineering,2022,44(S2):149-155.
- [20] ADEDIPE T,SHAFIEE M. An economic assessment framework for decommissioning of offshore wind farms using a cost breakdown structure[J].The International Journal of Life Cycle Assessment,2021,26(2):344-370.
- [21]吴睿,张健,赵长红,等.基于LCOE模型的海上风电平价上网分析[J].中国能源,2021,43(2):48-53.WU Rui,ZHANG Jian,ZHAO Changhong,et al.Analysis of offshore wind power parity based on LCOE model[J].Energy of China,2021,43(2):48-53.