基于K均值聚类算法的大客户用电行为分析Analysis on Power Consumption Behavior of Large Customers Based on K-Means Clustering Algorithm
崔立卿,贺伟军,田晶,虞伟,张叶
CUI Liqing,HE Weijun,TIAN Jing,YU Wei,ZHANG Ye
摘要(Abstract):
为主动应对电力体制改革产生的影响,分析研究售电侧大客户群体用电行为,梳理不同类型客户负荷特性规律,选取某地区电力企业2014年5月份营销数据,以该地区所有专变客户为分析对象,借用二八定律(帕累托法则)确定分析范围,通过用电信息明细数据开展相关分析,将专变大客户按用电负荷特性进行聚类分析,挖掘不同大客户用电行为潜在市场,为科学制定可开放容量、优化售电侧客户结构、迎峰度夏错避峰用电建议等提供支撑。
In order to take the initiative to deal with the influence of power system reform, this paper analyzes sales-side power consumption behavior of large customer groups and investigates rules of different types of customer load characteristics. This paper selects the marketing data of a power enterprise in May 2014 and analyzes special transformer customers in the region; by means of the 80/20 rule(Pareto principle) it determines the scope of analysis and through the detailed consumption data carries out the relevant analysis; the paper also conducts clustering analysis on the special customers according to the characteristics of electricity load and mines the potential market of power consumption behavior of large customers to provide support for scientific development of open capacity, sales-side customer structure optimization, summer peak meeting and staggering power consumption.
关键词(KeyWords):
负荷特性;大客户;聚类分析;二八定律
load characteristics;large customers;cluster analysis;the 80/20 rule
基金项目(Foundation):
作者(Author):
崔立卿,贺伟军,田晶,虞伟,张叶
CUI Liqing,HE Weijun,TIAN Jing,YU Wei,ZHANG Ye
DOI: 10.19585/j.zjdl.201712010
参考文献(References):
- [1]龙厚印,刘卫东,黄锦华,等.基于业扩报装的月度负荷预测[J].浙江电力,2016,35(12):11-14.
- [2]朱天博,傅军,杨一帆,等.基于用电信息采集系统用户负荷特性聚类分析[J].电测与仪表,2016,53(S1):70-73.
- [3]马永武,赵国生,黄明山,等.峰谷分时电价下用户需求响应行为模型的研究[J].郑州大学学报(理学版),2015,47(4):119-122.
- [4]于雷,汤庆峰,张建华.基于负荷资源分类建模和启发式策略的家居型微电网优化运行[J].电网技术,2015,39(8):2180-2187.
- [5]蔡秋娜,李嘉龙,王一,等.广东电网负荷特性[J].广东电力,2014,27(12):70-75.
- [6]成乐祥,季丽.基于加权K-means聚类和遗传算法的变电站规划[J].江苏电机工程,2016,35(6):9-12.
- [7]彭夸,杨超.基于用户实际日负荷曲线的负荷分类策略研究[J].贵州电力技术,2014,17(2):48-49.
- [8]李翔,顾洁.运用聚类算法预测地区电网典型日负荷曲线[J].电力与能源,2013,34(1):47-50.
- [9]阮文骏,王蓓蓓,李扬,等.峰谷分时电价下的用户响应行为研究[J].电网技术,2012,36(7):86-93.
- [10]黎灿兵,曲芳,王晓宁,等.基于模糊聚类的电力系统负荷特性分析[J].郑州大学学报(工学版),2010,31(1):107-110.
- [11]黄梅,贺仁睦,杨少兵.模糊聚类在负荷实测建模中的应用[J].电网技术,2006,30(14):49-52.
- [12]贺东明.聚类分析法在短期负荷预测中的应用[J].广东电力,2006,19(1):18-21.
- [13]李培强,李欣然,陈辉华,等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005(24):73-78.
- [14]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003,27(8):84-89.
- [15]徐良军,张笑第,王立军.基于聚类分析的用户分类和用电行为分析[J].山西电力,2016(4):23-27.
- [16]尹飞,刘忠,范一龙.基于二次聚类的低压台区负荷特性分析[J].中国电力教育,2014(30):125-128.