浙江电力

2024, v.43;No.341(09) 117-124

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于CNN-BiGRU-AT的凝汽器传热系数预测
Research on heat transfer coefficients of condensers based on CNN-BiGRU-AT

张文龙,朱培毅,朱宪然,焦宏波,杨磊,周亚男,王熙
ZHANG Wenlong,ZHU Peiyi,ZHU Xianran,JIAO Hongbo,YANG Lei,ZHOU Yanan,WANG Xi

摘要(Abstract):

以掌握凝汽器传热性能为目标,采用基于CNN-BiGRU-AT(基于注意力机制的卷积神经网络和双向门控循环单元)的模型对凝汽器传热系数进行预测。以某电厂1 000 MW机组的凝汽器作为研究对象,首先分析凝汽器特性,构建凝汽器传热系数计算的理论模型;然后通过CNN(卷积神经网络)对传热特性影响因素的数据特征进行提取,并利用BiGRU(双向门控循环单元)提取数据间长短期依赖关系;最后使用AT(注意力机制)来突出特征中的重要部分,由此构建了基于CNN-BiGRU-AT的凝汽器传热系数预测模型。分析计算结果表明,与传统的理论计算及BP(反向传播)网络、GRU(门控循环单元)网络相比,采用CNNBiGRU-AT模型的计算结果更加精确且规律性好。
To master the heat transfer performance of the condensers, a model based on convolutional neural network and bidirectional gated recurrent unit with attention mechanism(CNN-BiGRU-AT) is adopted to predict their heat transfer coefficients. Taking the condenser of a 1,000 MW unit in a power plant as the research subject, the condenser characteristics are first analyzed, and a theoretical model for calculating its heat transfer coefficients is constructed. Then, CNN is employed to extract the data features of factors influencing the heat transfer characteristics, while BiGRU is utilized to capture the long and short-term dependencies between the data. Finally, AT is used to highlight the important parts of the features, thereby constructing a prediction model for heat transfer coefficients based on CNN-BiGRU-AT. The analysis of the computational results indicates that compared to traditional theoretical calculations and BP(backpropagation) networks, as well as GRU networks, the computational results obtained using the CNN-BiGRU-AT model are more accurate and exhibit better regularity.

关键词(KeyWords): 传热系数;卷积神经网络;双向门控循环单元;凝汽器
heat transfer coefficient;CNN;BiGRU;condenser

Abstract:

Keywords:

基金项目(Foundation): 河北省自然科学基金(E2018502059)

作者(Author): 张文龙,朱培毅,朱宪然,焦宏波,杨磊,周亚男,王熙
ZHANG Wenlong,ZHU Peiyi,ZHU Xianran,JIAO Hongbo,YANG Lei,ZHOU Yanan,WANG Xi

DOI: 10.19585/j.zjdl.202409013

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享