柔直换流站穿墙套管绝缘击穿分析及材料改性机理研究Analysis of insulation breakdown of the wall bushing in a flexible DC converter station and modification mechanism research on the material
张吼,韩幸军,郭安琪,施佳昊,郑宏
ZHANG Hou,HAN Xingjun,GUO Anqi,SHI Jiahao,ZHENG Hong
摘要(Abstract):
环氧树脂浸渍绝缘纸作为柔直穿墙套管的主绝缘存在电场分布不均匀等问题。详细分析了某柔性直流换流站穿墙套管绝缘击穿事故的原因,并结合套管环氧树脂电芯体材料特性,采用添加纳米SiO_2(二氧化硅)改性环氧树脂的方法来提高套管的电气性能和热性能。实验表明,当纳米SiO_2添加量为4%(质量分数)时,环氧树脂固化物的相对介电常数下降到4.23(50 Hz时),介质损耗因数为0.002(50 Hz时),击穿场强达到了31 kV/mm,体积电阻率为3.7×10~(13)Ω·m。同时归纳总结了纳米SiO_2对环氧树脂基本物理性质与主要电热性质的影响,以期进一步改善穿墙套管材料电气绝缘性能。
Epoxy resin-impregnated insulating paper(RIP), the main insulation of wall bushings, is characterized by its uneven electric field distribution. The causes of insulation breakdown of the wall bushing in a flexible DC converter station are analyzed. Furthermore, the method of adding nano-SiO_2(silicon dioxide) to modify epoxy resin is adopted to improve the electrical and thermal properties of the bushing in view of the material characteristics of the epoxy resin core. The experiments show that the relative dielectric constant of the cured epoxy resin decreases to 4.23(at 50 Hz), the dielectric loss factor is 0.002(at 50 Hz), the breakdown field strength reaches 31 kV/mm, and the volume resistivity is 3.7×10~(13) Ω·m when the nano-SiO_2 is added with a mass fraction of 4%. The effects of nano-SiO_2 on the basic physical characteristics and main electrothermal characteristics of epoxy resin are summarized to further improve the electrical insulation properties of the wall bushing material.
关键词(KeyWords):
柔性直流输电;穿墙套管;环氧树脂;纳米粒子
flexible DC transmission;wall bushing;epoxy resin;nanoparticles
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211ZS22000L)
作者(Author):
张吼,韩幸军,郭安琪,施佳昊,郑宏
ZHANG Hou,HAN Xingjun,GUO Anqi,SHI Jiahao,ZHENG Hong
DOI: 10.19585/j.zjdl.202305013
参考文献(References):
- [1]孙夏青,赵林杰,罗雨,等.±350 kV柔性直流系统穿墙套管设计选型[J].南方电网技术,2016,10(7):62-68.SUN Xiaqing,ZHAO Linjie,LUO Yu,et al.Design and type selection of±350 kV VSC-HVDC wall bushing[J].Southern Power System Technology,2016,10(7):62-68.
- [2]张晋寅,杨旭,邓军,等.±800 kV柔性直流穿墙套管温升特性研究[J].变压器,2021,58(12):38-41.ZHANG Jinyin,YANG Xu,DENG Jun,et al. Study on temperature rise characteristics of±800 k V flexible DC through-wall bushing[J].Transformer,2021,58(12):38-41.
- [3]文豪.高导热EP/SrTiO3复合材料的绝缘及分解特性研究[D].武汉:武汉大学,2019.WEN Hao.Study on insulation and decomposition characteristics of EP/SrTiO3 composites with high thermal conductivity.[D].Wuhan:Wuhan University,2019.
- [4]黎斌,王日新,于欣,等.超/特高压直流套管的研发新思路:±800 kV电容式复合绝缘穿墙套管结构设计的探讨[J].高压电器,2021,57(7):1-11.LI B,WANG R X,YU X,et al.New idea on the development of EHV/UHVDC bushing—discussion on structure design of±800 kV capacitive composite insulated wall bushing[J].High Voltage Apparatus,2021,57(7):1-11.
- [5]张启浩,吴德贯,马正霖.±800 kV特高压直流输电工程直流穿墙套管设计缺陷及其改进方法[J].高压电器,2019,55(4):239-244.ZHANG Q H,WU D G,MA Z L.Defect and improved method of DC wall bushing design in±800 kV UHVDC transmission project[J].High Voltage Apparatus,2019,55(4):239-244.
- [6] BELL M,KRENTZ T,Keith Nelson J,et al.Investigation of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces[J].Journal of Colloid and Interface Science,2017,495:130-139.
- [7] WANG Z D,CHENG Y H,WANG H K,et al. Sandwiched epoxy-alumina composites with synergistically enhanced thermal conductivity and breakdown strength[J].Journal of Materials Science,2017,52(8):4299-4308.
- [8]王有元,王施又,陆国俊,等.纳米AlN改性对干式变压器环氧树脂绝缘性能的影响[J].电工技术学报,2017,32(7):174-180.WANG Youyuan,WANG Shiyou,LU Guojun,et al.Influence of nano-AlN modification on the insulation properties of epoxy resin of dry-type transformers[J].Transactions of China Electrotechnical Society,2017,32(7):174-180.
- [9]彭鹏,虞锦洪,江平开.超支化聚芳酰胺接枝氮化硼/环氧复合材料的制备与性能研究[J].绝缘材料,2012,45(3):1-5.PENG Peng,YU Jinhong,JIANG Pingkai. Preparation and properties of boron nitride/epoxy composite grafted with hyperbranched aromatic polyamide[J].Insulating Materials,2012,45(3):1-5.
- [10]江铁.低温下Al2O3/环氧树脂纳米复合电介质直流电气性能研究[D].杭州:浙江大学,2021.JIANG Tie.Study on DC electrical properties of Al2O3/epoxy nanocomposite dielectric at low temperature.[D].Hangzhou:Zhejiang University,2021.
- [11] WU J D,IIZUKA T,MONDEN K,et al.Characteristics of initial trees of 30 to 60μm length in epoxy/silica nanocomposite[J].IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(1):312-320.
- [12] PANDEY J C,GUPTA N. Study of treeing in epoxyalumina nanocomposites using electroluminescence[J].IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(2):648-654.
- [13]张天栋,石壮壮,吴加雪,等.填充型高导热环氧树脂复合材料的研究进展[J].绝缘材料,2022,55(3):10-22.ZHANG Tiandong,SHI Zhuangzhuang,WU Jiaxue,et al.Research progress of filled epoxy resin composites with high thermal conductivity[J]. Insulating Materials,2022,55(3):10-22.
- [14]马振宁,钟博,王培侨,等.氮化硼/环氧树脂绝缘导热材料的制备及性能表征[J].材料导报,2016,30(12):65-69.MA Zhenning,ZHONG Bo,WANG Peiqiao,et al.Preparation and properties study of boron nitride/epoxy resin insulating thermoconductive composite[J]. Materials Review,2016,30(12):65-69.
- [15] LEE SANCHEZ W A,HUANG C Y,CHEN J X,et al.Enhanced thermal conductivity of epoxy composites filled with Al2O3/boron nitride hybrids for underfill encapsulation materials[J].Polymers,2021,13(1):147.
- [16] DONNAY M,TZAVALAS S,LOGAKIS E. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength[J].Composites Science and Technology,2015,110:152-158.
- [17] KIM W,BAE J W,CHOI I D,et al.Thermally Conductive EMC(epoxy molding compound)for Microelectronic Encapsulation[J].Polymer Engineering&Science,1999,39(4):756-766.