浙江电力

2026, v.45;No.357(01) 102-115

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于Voronoi图与改进TT-GAN的光伏时序数据增强方法
A data enhancement method for PV time-series data based on Voronoi diagram and TT-GAN

朱耿,蒋元元,王波,贺旭,王晴
ZHU Geng,JIANG Yuanyuan,WANG Bo,HE Xu,WANG Qing

摘要(Abstract):

光伏场站量测数据的匮乏以及传感器故障、通信中断等造成的数据缺失,将影响功率预测的准确性与鲁棒性。因此,以构建统一多源域筛选机制与数据增强框架为目标,提出一种基于Voronoi图与改进TT-GAN(变换器生成对抗网络)的光伏时序数据增强方法。基于Voronoi图与数据强度指标实现多场景下迁移学习源站点集的动态选取,构建迁移学习赋能的Transformer-GAN模型,改进模型优化处理结构与微调方法,基于自注意力机制与有监督训练增强其处理数据噪声与特征学习的能力,使其适应数据生成和数据修补的不同目标。实验结果表明,所提模型在现有光伏时序数据集基础上实现了数据质量提升,能够提高功率预测的准确性。
The scarcity of measured data from photovoltaic(PV) power stations and data gaps caused by sensor failures or communication interruptions significantly compromise the accuracy and robustness of power forecasting. To address these challenges, this paper proposes a novel data enhancement method for PV time-series data based on Voronoi diagram and transfer learning-enabled transformer-based generative adversarial network(TT-GAN). The method aims to establish a unified mechanism for multi-source domain selection and data enhancement framework. A Voronoi diagram combined with a data-strength metric is used to dynamically select source station sets under diverse scenarios. Subsequently, a TT-GAN model is developed, incorporating structural and fine-tuning optimizations. Enhanced with a self-attention mechanism and supervised training, the model improves its ability to handle data noise and feature representation learning, making it suitable for both data generation and data repair tasks. Experimental results demonstrate that the proposed model significantly improves data quality on existing PV timeseries datasets and enhances the accuracy of power forecasting.

关键词(KeyWords): 数据增强;Voronoi图;数据强度;迁移学习;变换器生成对抗网络
data enhancement;Voronoi diagram;data strength;transfer learning;GAN

Abstract:

Keywords:

基金项目(Foundation): 宁波永耀电力投资集团有限公司科技项目(KJCX009)

作者(Author): 朱耿,蒋元元,王波,贺旭,王晴
ZHU Geng,JIANG Yuanyuan,WANG Bo,HE Xu,WANG Qing

DOI: 10.19585/j.zjdl.202601010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享