浙江电力

2019, v.38;No.283(11) 10-15

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于IACO-ABC算法的变电站巡检机器人路径规划
Path Planning of Substation Patrol Robot Based on IACO-ABC Algorithms

薛阳,俞志程,吴海东,张宁
XUE Yang,YU Zhicheng,WU Haidong,ZHANG Ning

摘要(Abstract):

目前,变电站智能巡检机器人的路径规划中,各种智能算法如ACO(蚁群优化)、 ABC(人工蜂群)等应用较为广泛,但传统ACO算法存在容易陷入局部最优值、收敛速度较慢等问题。为此,在对传统ACO算法进行改进的基础上,结合ABC算法的优势,提出IACO-ABC(改进蚁群-蜂群融合)算法,将其应用到变电站巡检机器人路径规划中,以提高路径规划算法的鲁棒性,并解决算法陷入局部最优的问题。采用栅格法建立工作环境进行仿真,结果表明采用该算法能够有效解决上述问题,在复杂环境下的规划能力和鲁棒性能较好,并提高了路径质量以及算法效率。
ACO(ant colony optimization), ABC(artificial bee colony) and other intelligent algorithms are widely used in path planning of intelligent substation inspection robot. However, the traditional ACO is prone to slow local optimal solution and convergence speed. Therefore, an IACO-ABC(improved ant colony optimization-artificial bee colony) is proposed and applied by improving the traditional ACO and in combination with advantages of ABC to the path planning of substation inspection robot to improve the robustness and proneness to the local optimal solution. The grid-based method is used to establish an operating environment for simulation, and the result shows that the method can better solve the problems with favourable planning capacity and robustness as well as path quality and efficiency under complex situations.

关键词(KeyWords): 路径规划;巡检机器人;蚁群算法;人工蜂群算法
path planning;patrol robot;ant colony algorithm;ABC

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211HZ17000F);; 国家自然科学青年基金资助项目(51405286);; 上海市电站自动化技术重点实验室项目(13DZ2273800)

作者(Author): 薛阳,俞志程,吴海东,张宁
XUE Yang,YU Zhicheng,WU Haidong,ZHANG Ning

DOI: 10.19585/j.zjdl.201911002

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享