浙江电力

2018, v.37;No.272(12) 38-44

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

LSTM深度学习在短期95598话务工单异动预警中的应用
Application of LSTM Deep Learning in Alteration Warning of 95598 Telephone Orders

罗欣,张爽,景伟强,朱蕊倩,魏骁雄,陈博,葛岳军
LUO Xin,ZHANG Shuang,JIN Weiqiang,ZHU Ruiqian,WEI Xiaoxiong,CHEN Bo,GE Yuejun

摘要(Abstract):

以深度学习为代表的人工智能2.0技术为短期95598话务工单异动预警提供了可行的技术手段。为研究LSTM神经网络深度学习算法对话务工单预测的可行性,提出一种基于LSTM深度学习建模的短期95598话务工单异动预警方法。以95598系统实际运行数据为例,分析95598话务工单的异动规律与预测应用场景。实例分析结果表明,该方法可以更好地学习话务工单所具有的动态学习预测和智能异动预警特征,具有较高的预测精度。
The artificial intelligence 2.0 technology represented by deep learning provides a feasible technical means for short-term alteration warning of 95598 telephone orders. In order to study the feasibility of LSTM network deep learning algorithm for telephone orders prediction, a short-term 95598 telephone orders prediction method based on LSTM network deep learning modeling is proposed. Through the application of the actual operation data of 95598 system, this paper analyzes the variation rule of 95598 telephone orders and forecast the application scenario. The results of case analysis show that the method can better learn the dynamic learning prediction and intelligent alteration warning features of telephone orders, and has high prediction accuracy.

关键词(KeyWords): 95598话务工单预测;置信区间异动;LTSM;深度学习
95598 telephone order prediction;confidence interval alteration;LTSM;deep learning

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 罗欣,张爽,景伟强,朱蕊倩,魏骁雄,陈博,葛岳军
LUO Xin,ZHANG Shuang,JIN Weiqiang,ZHU Ruiqian,WEI Xiaoxiong,CHEN Bo,GE Yuejun

DOI: 10.19585/j.zjdl.201812007

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享