浙江电力

2023, (06) 70-77

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于ACMD和BiGRU-Attention的负荷预测模型研究
Research on a load forecasting model based on ACMD and BiGRU-Attention

沈建良,来骏,张翼,王建锋,仲赞,杨平
SHEN Jianliang,LAI Jun,ZHANG Yi,WANG Jianfeng,ZHONG Zan,YANG Ping

摘要(Abstract):

为降低用户侧负荷的波动性和随机性对负荷预测精度的影响,提出一种基于ACMD(自适应啁啾模态分解)和含Attention机制的BiGRU-Attention(双向门控循环单元)短期负荷预测模型。首先采用ACMD将负荷时间序列分解为多个相对规律的子分量;然后使用BiGRU模型分别对各子分量进行预测并相加得到最终预测结果,为突出重要信息的影响,在BiGRU模型中引入Attention机制赋予BiGRU网络隐含状态相应的权重;使用麻雀搜索算法对模型超参数进行优化选择,以减小模型超参数选择不当的影响。采用公开数据集进行算例分析,并分别与单一模型和组合模型进行比较,结果表明该方法具有更好的预测效果。
To lessen the impact of fluctuation and randomness of the user-side load on the load forecasting accuracy, a BiGRU-Attention(bidirectional gated recurrent unit with attention) short-term load forecasting model based on ACMD(adaptive chirp mode decomposition) and the Attention mechanism is proposed. Firstly, ACMD is used to decompose the load time series into several relatively regular subcomponents; then, the BiGRU model is used to predict the subcomponents and sum them up to obtain the final prediction results. To highlight the influence of important information, the Attention mechanism is introduced into the BiGRU model to give corresponding weights to the implied states of the BiGRU network. The sparrow search algorithm is used for the optimal selection of model hyperparameters to reduce the impact of misselection of model hyperparameters. An open data set is used for example analysis that is compared with a single model and combined model respectively. The results show that the method is superior in prediction.

关键词(KeyWords): 负荷预测;双向门控循环单元;自适应啁啾模态分解;麻雀搜索算法;注意力机制
load forecasting;BiGRU;ACMD;sparrow search algorithm;Attention mechanism

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211UZ2000K2)

作者(Author): 沈建良,来骏,张翼,王建锋,仲赞,杨平
SHEN Jianliang,LAI Jun,ZHANG Yi,WANG Jianfeng,ZHONG Zan,YANG Ping

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享