可再生能源制氢建模技术研究A study of the modeling technology of hydrogen production from renewable energy sources
吴启亮,章雷其,赵波
WU Qiliang,ZHANG Leiqi,ZHAO Bo
摘要(Abstract):
基于电氢转化机理的氢储能技术能够实现风光消纳,平抑风光波动,可作为重要的可再生能源发电支撑形式。构建多元仿真模型是推进风-光-氢耦合系统设计与控制的重要手段,介绍了风力发电、光伏发电及电制氢的机理模型及常用简化模型,对比了不同可再生能源发电形式与制氢的耦合特征。结合国内外建模案例,阐述了仿真模型在运行控制优化、源-网-荷互动、容量配置方面的应用价值。结合技术发展现状,从多物理场、多时间尺度、多元素三个方面对技术的发展进行分析与展望。通过对可再生能源耦合制氢建模基础的综述,可促进相关平台、工程建设,加快实现向零碳供能、绿色用能的能源结构转型。
The hydrogen energy storage technology based on the electric-hydrogen conversion mechanisms can realize wind and PV power consumption, smooth out wind and PV power fluctuations, and thus can be used as an important form of renewable energy power generation support. The construction of multivariate simulation models is an important means to promote the design and control of a wind-PV-hydrogen coupling system. The mechanistic models and common simplified models of wind power generation, photovoltaic power generation, and hydrogen production through electrolysis are introduced. The coupling characteristics of different renewable energy generation and hydrogen production are compared. Moreover, the application value of simulation models in operation and control optimization, source-grid-load interaction, and capacity configuration is illustrated based on domestic and foreign modeling cases.In view of the present technology development, the development of technology is analyzed and foreseen concerning the multi-physical field, multi-time scale, and multi-element to guide and facilitate the construction of related platforms and projects to accelerate the energy mix transformation towards zero-carbon energy supply and green energy use through the review of the basis for modeling of coupled hydrogen production from renewable energy sources.
关键词(KeyWords):
可再生能源耦合制氢;水电解制氢;风电制氢;光伏制氢;氢储能;仿真模型
coupled hydrogen production from renewable energy sources;hydrogen production by water electrolysis;hydrogen production by wind power;hydrogen production by PV power;hydrogen energy storage;simulation model
基金项目(Foundation): 国家电网有限公司科技项目资助(5400-202219164A-1-1-ZN)
作者(Author):
吴启亮,章雷其,赵波
WU Qiliang,ZHANG Leiqi,ZHAO Bo
DOI: 10.19585/j.zjdl.202305003
参考文献(References):
- [1]潘光胜,顾钟凡,罗恩博,等.新型电力系统背景下的电制氢技术分析与展望[J/OL].电力系统自动化:1-15[2023-02-10].http://doi.org/10.7500/AEPS20220630003.PAN Guangsheng,GU Zhongfan,LUO Enbo,et al.Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J/OL].Automation of Electric Power Systems:1-15[2023-02-10]. http://doi.org/10.7500/AEPS20220630003.
- [2]董雪涛,冯长有,朱子民,等.新型电力系统仿真工具研究初探[J].电力系统自动化,2022,46(10):53-63.DONG Xuetao,FENG Changyou,ZHU Zimin,et al.Preliminary study on simulation tool for new power system[J]. Automation of Electric Power Systems,2022,46(10):53-63.
- [3]徐涛金.风电机组整机传动链柔性多体建模及动态特性研究[D].重庆:重庆理工大学,2016.XU Taojin.Study on flexible multi-body modeling and dynamic characteristics of wind turbine drive chain[D].Chongqing:Chongqing University of Technology,2016.
- [4] PESIC S.Wind energy,aerodynamics of wind energy systems with horizontal rotation axis[M]. Belgrade:Faculty of Mechanical Engineering,1994.
- [5] LUBOSNY Z. Wind turbine operation in electric power systems[M].Springer Verlag Berlin Heidelberg:Springer,2010.
- [6] ZHANG J. Control technology for doubly-fed induction wind power generator[M].Xi’an:Northwestern Polytechnical University Press,2018.
- [7]孔晓民.含风电场的地区电网无功优化研究[D].北京:华北电力大学,2012.KONG Xiaomin.Study on reactive power optimization of regional power grid with wind farm[D]. Beijing:North China Electric Power University,2012.
- [8] ZHANG X G,JIA J R,ZHENG L M,et al. Maximum power point tracking algorithms for wind power generation system:review,comparison and analysis[J]. Energy Science&Engineering,2022,11:430-444.
- [9]张思,杨晓雷,阙凌燕,等.高比例光伏发电对浙江电网电力平衡的影响及应对策略[J].浙江电力,2022,41(11):9-16.ZHANG Si,YANG Xiaolei,QUE Lingyan,et al.The impact of high-proportion photovoltaic power generation on the power balance of Zhejiang power grid and its countermeasures[J].Zhejiang Electric Power,2022,41(11):9-16.
- [10]苗伟杰,窦真兰,张春雁,等.风-光-氢多能互补系统仿真建模方法综述[J].上海节能,2022(1):46-55.MIAO Weijie,DOU Zhenlan,ZHANG Chunyan,et al.Overview of simulation modeling methods on wind-so-larhydrogen multi-energy complementary system[J].Shanghai Energy Conservation,2022(1):46-55.
- [11] AOUALI F Z,BECHERIF M,TABANJAT A,et al.Modelling and experimental analysis of a PEM electrolyser powered by a solar photovoltaic panel[J].Energy Procedia,2014,62:714-722.
- [12]苏建徽,余世杰,赵为,等.硅太阳电池工程用数学模型[J].太阳能学报,2001,22(4):409-412.SU Jianhui,YU Shijie,ZHAO Wei,et al.Investigation on engineering analytical model of silicon solar cells[J].Acta Energiae Solaris Sinica,2001,22(4):409-412.
- [13] SARVI M,AZADIAN A. A comprehensive review and classified comparison of MPPT algorithms in PV systems[J].Energy Systems,2022,13(2):281-320.
- [14]朱煜伟,刘梁挺.光伏电池输出特性及MPPT仿真[J].电子制作,2022,30(19):73-76.ZHU Yuwei,LIU Liangting.Output characteristics of photovoltaic cells and MPPT simulation[J]. Practical Electronics,2022,30(19):73-76.
- [15]陈文进,朱峰,张童彦,等.基于AFSA-BP神经网络的光伏功率预测方法[J].浙江电力,2022,41(4):7-13.CHEN Wenjin,ZHU Feng,ZHANG Tongyan,et al. A photovoltaic power prediction method based on AFSA-BP neural network[J].Zhejiang Electric Power,2022,41(4):7-13.
- [16]李子烨,劳力云,王谦.制氢技术发展现状及新技术的应用进展[J].现代化工,2021,41(7):86-89.LI Ziye,LAO Liyun,WANG Qian.Development status of hydrogen production technologies and application advances of new technologies[J]. Modern Chemical Industry,2021,41(7):86-89.
- [17]孙邦兴,杨华,骈松.PEM型电解水制氢设备在电厂的应用[J].山东化工,2020,49(8):182-184.SUN Bangxing,YANG Hua,PIAN Song.Application of PEM-type hydrogen generator by water electrolysis in power plant[J]. Shandong Chemical Industry,2020,49(8):182-184.
- [18]丁福臣,易玉峰.制氢储氢技术[M].北京:化学工业出版社,2006.
- [19]张后程.电解水制氢和燃料电池系统的性能特性与参数优化设计[D].厦门:厦门大学,2012.ZHANG Houcheng. Performance characteristics and parameter optimization design of hydrogen production from electrolyzed water and fuel cell system[D].Xiamen:Xiamen University,2012.
- [20] Bo Han,M. Steen,III,Jingke Mo,et al.Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy[J].International Journal of Hydrogen Energy,2015,40(22):7006-7016.
- [21] Dale NV,Mann MD,Salehfar H. Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics[J]. Journal of Power Sources,2008,185(2):1348-1353.
- [22] HENAO C,AGBOSSOU K,HAMMOUDI M,et al.Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser[J]. Journal of Power Sources,2014,250:58-67.
- [23] DA COSTA LOPES F,WATANABE E H.Experimental and theoretical development of a PEM electrolyzer model applied to energy storage systems[C]//2009 Brazilian Power Electronics Conference.Bonito-Mato Grosso do Sul,Brazil:IEEE,2009:775-782.
- [24] M. Ni,M. K. H. Leung,D. V. C. Leung.Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy,2007,32(13):2305-2313.
- [25]王丹丹,李亚楼,李芳,等.碳中和背景下高温固体氧化物电解制氢的过程建模与热力学分析[J].发电技术,2021,42(5):554-560.WANG Dandan,LI Yalou,LI Fang,et al.Process modelling and thermodynamic analysis of hydrogen production by high temperature solid oxide electrolysis under the background of carbon neutrality[J]. Power Generation Technology,2021,42(5):554-560.
- [26] OLIVIER P,BOURASSEAU C,BOUAMAMA Pr. B.Low-temperature electrolysis system modelling:a review[J]. Renewable and Sustainable Energy Reviews,2017,78:280-300.
- [27] SHEN X J,ZHANG X Y,LIE T,et al. Mathematical modeling and simulation for external electrothermal characteristics of an alkaline water electrolyzer[J]. International Journal of Energy Research,2018,42:3899-3914.
- [28] Meng N,Leung MK,Leung DY. An electrochemical model of a solid oxide steam electrolyzer for hydrogen production[J]. Chemical Engineering Technology. 2006,29:637-642.
- [29] GILLIAM R J,GRAYDON J W,KIRK D W,et al.A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures[J].International Journal of Hydrogen Energy,2007,32(3):359-364.
- [30] SPRINGER T,ZAWODZINSKI T,GOTTESFELD S.Polymer electrolyte fuel cell model[J].Journal of the Electrochemical Society,1991,138:2334-2342.
- [31] NI M,LEUNG M K H,LEUNG D Y C.Energy and exergy analysis of hydrogen production by a proton exchange membrane(PEM)electrolyzer plant[J].Energy Conversion and Management,2008,49(10):2748-2756.
- [32] VERHAERT I,DE PAEPE M,MULDER G.Thermodynamic model for an alkaline fuel cell[J].Journal of Power Sources,2009,193(1):233-240.
- [33] KIM H,PARK M,LEE K S. One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production[J].International Journal of Hydrogen Energy,2013,38(6):2596-2609.
- [34] NIEMINEN J,DINCER I,NATERER G. Comparative performance analysis of PEM and solid oxide steam electrolysers[J]. International Journal of Hydrogen Energy,2010,35(20):10842-10850.
- [35]陆玉正.太阳能与固体氧化物电解池联合制氢关键技术的研究[D].南京:东南大学,2017.LU Yuzheng.Study on key technology of hydrogen production by combining solar energy with solid oxide electrolytic cell[D].Nanjing:Southeast University,2017.
- [36]张玉魁,张晨佳,孙振新,等.高温固体氧化物电解制氢模拟研究进展[J].化工进展,2021,40(增刊1):126-141.ZHANG Yukui,ZHANG Chenjia,SUN Zhenxin,et al.Review on modeling and simulation of high temperature solid oxide electrolysis for hydrogen production[J].Chemical Industry and Engineering Progress,2021,40(S1):126-141.
- [37] WATOWICH S,BERRY R. Optimal current paths for model electrochemical systems[J].The Journal of Physical Chemistry,1986,90:4624-4631.
- [38]杨卫华,蒋康乐,宋旭飞.基于Matlab/Simulink的冀中南地区风光互补联合制氢系统运行效率影响因素分析[C]//《环境工程》2018年全国学术年会论文集(中册).[出版地不详:出版者不详],2018:388-393.
- [39]戴凡博.PEM电解水制氢催化剂及直接耦合光伏发电系统建模研究[D].杭州:浙江大学,2020.DAI Fanbo.Study on PEM catalyst for hydrogen production by electrolysis of water and modeling of direct coupling photovoltaic power generation system[D]. Hangzhou:Zhejiang University,2020.
- [40]郭小强,魏玉鹏,万燕鸣,等.新能源制氢电力电子变换器综述[J].电力系统自动化,2021,45(20):185-199.GUO Xiaoqiang,WEI Yupeng,WAN Yanming,et al.Review on power electronic converters for producing hydrogen from renewable energy sources[J]. Automation of Electric Power Systems,2021,45(20):185-199.
- [41]蔡国伟,孔令国,薛宇,等.风氢耦合发电技术研究综述[J].电力系统自动化,2014,38(21):127-135.CAI Guowei,KONG Lingguo,XUE Yu,et al.Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems,2014,38(21):127-135.
- [42] KOPONEN J,RUUSKANEN V,KOSONEN A,et al.Effect of converter topology on the specific energy consumption of alkaline water electrolyzers[J].IEEE Transactions on Power Electronics,2019,34(7):6171-6182.
- [43]蔡国伟,陈冲,孔令国,等.风电/制氢/燃料电池/超级电容器混合系统控制策略[J].电工技术学报,2017,32(17):84-94.CAI Guowei,CHEN Chong,KONG Lingguo,et al.Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J].Transactions of China Electrotechnical Society,2017,32(17):84-94.
- [44]尹文良,刘琳,张存山,等.含制氢储能的混合传动风电系统建模与运行特性分析[J].电力自动化设备,2020,40(10):64-70.YIN Wenliang,LIU Lin,ZHANG Cunshan,et al.Modeling and operation performance analysis of hybrid drive wind power generation system with hydrogen energy storage[J]. Electric Power Automation Equipment,2020,40(10):64-70.
- [45]秦梦珠,张国月,齐冬莲.风电-氢能耦合系统建模及仿真[J].电子技术,2016,45(8):18-23.QIN Mengzhu,ZHANG Guoyue,QI Donglian.Modeling and simulation of the integrated system of wind-hydrogen[J].Electronic Technology,2016,45(8):18-23.
- [46]张顺星,苑易伟,胡平,等.光伏-PEM直接耦合电解水制氢系统研究[J].工业仪表与自动化装置,2022(3):49-52.ZHANG Shunxing,YUAN Yiwei,HU Ping,et al. Research on photovoltaic-PEM electrolytic water hydrogen direct coupling system[J]. Industrial Instrumentation&Automation,2022(3):49-52.
- [47]周涣,田易之.光伏-PEM制氢直接耦合系统建模与仿真[J].现代电子技术,2022,45(19):178-181.ZHOU H,TIAN Y Z. Modeling and simulation of photovoltaic-PEM hydrogen production direct coupling system[J].Modern Electronics Technique,2022,45(19):178-181.
- [48]潘光胜,顾伟,张会岩,等.面向高比例可再生能源消纳的电氢能源系统[J].电力系统自动化,2020,44(23):1-10.PAN G S,GU W,ZHANG H Y,et al.Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of Electric Power Systems,2020,44(23):1-10.
- [49]黄帅飞,丁晓群,高乾恒,等.光-氢-储系统接入配电网的有功-无功协调优化[J].南方电网技术,2018,12(7):44-51.HUANG Shuaifei,DING Xiaoqun,GAO Qianheng,et al.Active-reactive power coordination optimization in distribution network interconnected with photovoltaic-hydrogenenergy storage systems[J].Southern Power System Technology,2018,12(7):44-51.
- [50] KHALILNEJAD A,RIAHY G H.A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer[J]. Energy Conversion and Management,2014,80:398-406.
- [51] PINO F J,VALVERDE L,ROSA F.Influence of wind turbine power curve and electrolyzer operating temperature on hydrogen production in wind-hydrogen systems[J].Journal of Power Sources,2011,196(9):4418-4426.
- [52] VALDéS R,LUCIO J H,RODRíGUEZ L R. Operational simulation of wind power plants for electrolytic hydrogen production connected to a distributed electricity generation grid[J].Renewable Energy,2013,53(9):249-257.
- [53] BELMOKHTAR K,DOUMBIA M L,AGBOSSOU K.New fuzzy logic based management strategy to improve hydrogen production from hybrid wind power systems[J].International Journal of Renewable Energy Research,2014,4(3):731-742.
- [54] Sarrias-Mena R, Fernández-Ramírez L M, GarcíaVázquez C A,et al.Electrolyzer models for hydrogen production from wind energy systems[J].International Journal of Hydrogen Energy,2015,40(7):2927-2938.
- [55] R. Iwasaki,T. Bouno,T. Miyake,et al.Study of optimum operation point of the photovoltaic cell combined with electrolysis cell[J]. Mem. Fac. Eng. Miyazaki Univ.(Japan),2005:83-88.
- [56] M. Uzunoglu,O. C. Onar,M. S. Alam.Modeling,control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications[J].Renewable Energy,2009,34(3):509-520.
- [57] CLARKE R E,GIDDEY S,CIACCHI F T,et al.Direct coupling of an electrolyser to a solar PV system for generating hydrogen.International Journal of Hydrogen Energy,2009,34(6):2531-2542.
- [58] ATLAM O. An experimental and modelling study of a photovoltaic/proton-exchange membrane electrolyser system. International Journal of Hydrogen Energy,2009,34(16):6589-6595.
- [59] GARCíA-VALVERDE R,ESPINOSA N,URBINA A.Optimized method for photovoltaic-water electrolyser direct coupling[J]. International Journal of Hydrogen Energy,2011,36:10574-10586.
- [60] DJAFOUR A,MATOUG M,BOURAS H,et al.Photovoltaic-assisted alkaline water electrolysis:basic principles[J].International Journal of Hydrogen Energy,2011,36(6):4117-4124.
- [61] PATSIOS C,ANTONAKOPOULOS M,CHANIOTIS A,et al.Control and analysis of a hybrid renewable energybased power system[C]//The XIX International Conference on Electrical Machines-ICEM. Rome,Italy:IEEE,2010:1-6.
- [62] SIMOES J P,SIM?ES J P,COELHO M C,et al.MATLAB/SIMULINK based teaching system for a Stand-Alone Energy System Supported by totally renewable hydrogen production[C]//2009 3rd IEEE International Conference on E-Learning in Industrial Electronics(ICELIE).Porto,Portugal:IEEE,2010:86-91.
- [63]尹文良,芮晓明,武鑫.1.5 MW风电制氢系统建模分析与仿真研究[EB/OL].[2023-02-10]. http://www. paper.edu.cn/releasepaper/content/201601-531.
- [64]张虹,孙权,李占军,等.风氢耦合系统协同控制发电策略研究[J].东北电力大学学报,2018,38(3):15-23.ZHANG Hong,SUN Quan,LI Zhanjun,et al.Research on synergistic control strategy of wind power coupled with hydrogen system[J].Journal of Northeast Dianli University(Natural Science Edition),2018,38(3):15-23.
- [65]李春华,朱新坚,胡万起,等.光伏/燃料电池联合发电系统的建模和性能分析[J].电网技术,2009,33(12):88-93.LI Chunhua,ZHU Xinjian,HU Wanqi,et al.Modeling and performance analysis of photovoltaic/fuel cell combined power generation system[J].Power System Technology,2009,33(12):88-93.
- [66]杨智敏.新型光伏电池混合系统和光伏制氢系统性能优化的研究[D].泉州:华侨大学,2015.YANG Zhimin.Study on performance optimization of new photovoltaic hybrid system and photovoltaic hydrogen production system[D].Quanzhou:Huaqiao University,2015.
- [67]蔡国伟,陈冲,孔令国,等.风电/光伏/制氢/超级电容器并网系统建模与控制[J].电网技术,2016,40(10):2982-2990.CAI Guowei,CHEN Chong,KONG Lingguo,et al.Modeling and control of wind power/photovoltaic/hydrogen production/supercapacitor grid-connected system[J].Power System Technology,2016,40(10):2982-2990.
- [68]孔令国,蔡国伟,李龙飞,等.氢综合能源系统在线能量调控策略与实验平台搭建[J].电工技术学报,2018,33(14):3371-3384.KONG Lingguo,CAI Guowei,LI Longfei,et al.On-line energy regulation strategy and experimental platform construction of hydrogen comprehensive energy system[J].Transactions of China Electrotechnical Society,2018,33(14):3371-3384.
- [69]陈维荣,傅王璇,韩莹,等.计及需求侧的风-光-氢多能互补微电网优化配置[J].西南交通大学学报,2021,56(3):640-649.CHEN W R,FU W X,HAN Y,et al.Optimal configuration of wind-solar-hydrogen multi-energy complementary microgrid with demand side[J].Journal of Southwest Jiaotong University,2021,56(3):640-649.
- [70]贾成真,王灵梅,孟恩隆,等.风光氢耦合发电系统的容量优化配置及日前优化调度[J].中国电力,2020,53(10):80-87.JIA Chengzhen,WANG Lingmei,MENG Enlong,et al.Optimal capacity configuration and day-ahead scheduling of wind-solar-hydrogen coupled power generation system[J].Electric Power,2020,53(10:)80-87.
- [71]邵志芳,吴继兰.基于动态电价风光电制氢容量配置优化[J].太阳能学报,2020,41(8):227-235.SHAO Zhifang,WU Jilan.Optimization of capacity allocation for hydrogen production from wind,solar and electricity based on dynamic electricity price[J]. Acta Energiae Solaris Sinica,2020,41(8):227-235.
- [72] ZHANG Xiyuan,WANG Bowen,XU Yifan,et al.Effects of different loading strategies on the dynamic response and multi-physics fields distribution of PEMEC stack[J].Fuel,2023,332:126090.
- [73] CHEN Qin,WANG Yun,YANG Fan,et al. Twodimensional multi-physics modeling of porous transport layer in polymer electrolyte membrane electrolyzer for water splitting[J].International journal of hydrogen energy,2020,45(58):32984-32994.
- [74]邢晓慧.质子交换膜电解池传热传质及流场结构研究[D].北京:北京交通大学,2020.XING Xiaohui.Study on heat and mass transfer and flow field structure of proton exchange membrane electrolytic cell[D].Beijing:Beijing Jiaotong University,2020.
- [75] HUANG Danji,XIONG Binyu,FANG Jiakun,et al. A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell[J].Applied Energy,2022,314:8987.
- [76] HUANG J H,XIE Y H,YAN L,et al.Decoupled amphoteric water electrolysis and its integration with Mn-Zn battery for flexible utilization of renewables[J].Energy&Environmental Science,2021,14(2):883-889.
- [77] QI Ruomei,GAO Xiaoping,LIN Jin,et al.Pressure control strategy to extend the loading range of an alkaline electrolysis system[J].International Journal of Hydrogen Energy,2021,46(73):35997-36011.
- [78]沈小军,聂聪颖,吕洪.计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J].电工技术学报,2021,36(3):463-472.SHEN Xiaojun,NIE Congying,LüHong. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J].Transactions of China Electrotechnical Society,2021,36(3):463-472.
- [79]吉旭,周步祥,贺革,等.大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J].工程科学与技术,2022,54(5):1-11.JI Xu,ZHOU Buxiang,HE Ge,et al.Research progress on key technologies and applications of large-scale renewable energy electrolytic water for hydrogen production and ammonia synthesis[J]. Advanced Engineering Sciences,2022,54(5):1-11.
- [80] BIDI F K,DAMOUR C,GRONDIN D,et al. Optimal fuel cell and electrolyser Energy Management System for microgrid[C]//IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society.Lisbon,Portugal:IEEE,2019:2197-2202.
- [81]郑博,白章,袁宇,等.多类型电解协同的风光互补制氢系统与容量优化[J].中国电机工程学报,2022,42(23):8486-8495.ZHENG Bo,BAI Zhang,YUAN Yu,et al. Multi-type electrolysis synergistic wind-solar hybrid hydrogen production system and capacity optimization[J]. Proceedings of the CSEE,2022,42(23):8486-8495.
- [82]张丽平.分布式风氢混合能源系统建模及功率分配策略研究[D].石家庄:河北科技大学,2020.ZHANG Liping.Research on modeling and power allocation strategy of distributed wind-hydrogen hybrid energy system[D].Shijiazhuang:Hebei University of Science and Technology,2020.
- [83]高玉,王琦,陈严,等.考虑需求响应和能量梯级利用的含氢综合能源系统优化调度[J].电力系统自动化,2023,47(4):51-59.GAO Y,WANG Q,CHEN Y,et al.Optimal dispatch of integrated energy system with hydrogen considering demand response and cascade energy utilization[J].Automation of Electric Power Systems,2023,47(4):51-59.