基于稳态电场分析的冷缩中间接头结构优化Structure Optimization of Cold Shrink Joint Based on Steady-state Static Electric Field Analysis
陈子涵,时亨通,高承华,郭然,邱方驰,姜林福
CHEN Zihan,SHI Hengtong,GAO Chenghua,GUO Ran,Qiu Fangchi,JIANG Linfu
摘要(Abstract):
冷缩中间接头在配电网中应用广泛,其电气性能受结构设计、原材料性能、安装工艺、运行环境等因素影响;结构设计是影响中间接头电气性能的首要因素,需充分考虑其合理性及可优化性。以8.7 kV/15 kV冷缩中间接头为例,采用相同结构的应力锥,针对不同结构屏蔽管和不同绝缘厚度,利用有限元法计算稳态电场分布,优化中间接头结构。仿真结果表明:中间接头内部电场分布受增强绝缘厚度、屏蔽管厚度、屏蔽管倒角等因素综合影响;屏蔽管厚度一定时,采用多段弧倒角的电场均匀效果更佳;增强绝缘厚度相同或适当增大时,采用切削反应力锥结构的电场均匀效果与采用屏蔽管结构的最优值相接近,但中间接头主体单边厚度可减小。
Cold shrink joints are widely used in distribution networks and the electrical performance is affected by structure design, material property, installation technology and operation environment, among which structure design plays a leading role and demands reasonableness and optimization. This paper takes 8.7 kV/15 kV cold shrink joint with same stress cone structure for example. In view of the different screen tubes and insulation thickness, the finite element method is used to calculate steady-state electric field distribution to optimize the joint structure. The simulation result shows that the inner electric field distribution of the joints are affected by the combination of reinforced insulation thickness, screen tube thickness and screen tube chamfer; for screen tube with fixed thickness, it demonstrates better performance with multiple segmentation chamfer; for joint with the same or increased reinforced insulation thickness, the counter stress cone structure takes on even electric field effect similar to the best result of screen tube structure, while the total joints' thickness is significantly reduced.
关键词(KeyWords):
冷缩中间接头;增强绝缘;屏蔽管;电场分布;结构优化
cold shrink joint;reinforced insulation;screen tube;electric field distribution;structure optimization
基金项目(Foundation): 中国南方电网有限责任公司科技项目(SZKJXM20190057)
作者(Author):
陈子涵,时亨通,高承华,郭然,邱方驰,姜林福
CHEN Zihan,SHI Hengtong,GAO Chenghua,GUO Ran,Qiu Fangchi,JIANG Linfu
DOI: 10.19585/j.zjdl.202101010
参考文献(References):
- [1]王劲,覃煜,张行,等.10 kV交流电力电缆冷缩式中间接头电场仿真[J].广东电力,2018,31(12):127-133.
- [2]刘毅刚,刘刚,王振华,等.电缆中间接头连接管压接电阻实验及分析[J].广东电力,2016,29(5):108-112.
- [3]蒋晓娟,梁惟钢,夏俊峰,等.35 kV电力电缆冷缩式中间接头典型缺陷电场计算及故障分析[J].绝缘材料,2015(11):59-63.
- [4]方春华,汤世祥,潘明龙.10 kV电缆中间接头典型缺陷仿真分析[J].三峡大学学报:自然科学版,2016,38(2):55-59.
- [5]古亮,赵阿琴,郝鸿凯,等.缺陷对电缆中间接头温度分布影响的仿真研究[J].绝缘材料,2019,52(5):69-74.
- [6]熊俊,陆国俊,陈志娟,等.一起10 kV电缆中间接头击穿故障的原因分析[J].广东电力,2011,24(5):89-92.
- [7]严有祥,朱婷,王蕾.基于有限元法对±320 kV直流XLPE电缆中间接头电场与空间电荷的仿真计算[J].高电压技术,2017,43(11):3591-3598.
- [8]尚康良,曹均正,赵志斌,等.320 kV XLPE高压直流电缆接头附件仿真分析和结构优化设计[J].中国电机工程学报,2016,36(7):2018-2024.
- [9]朱智恩,陈龙啸,杨黎明,等.柔性直流电缆附件应力锥设计研究[J].绝缘材料,2019,52(6):86-89.
- [10]陈振新,俞恩科,汪洋,等.整体预制式和绕包式XLPE高压直流电缆接头电场分布研究及接头结构优化[J].哈尔滨理工大学学报,2018,23(6):77-81.
- [11]李长明,伍国方,李春阳,等.XLPE绝缘高压直流电缆终端内缺陷对电场分布的影响[J].电机与控制学报,2018,22(12):66-71.
- [12]YU J,CHEN X,ZHOU H.Electric field calculation and optimization for stress cone of DC cable joint based on the coaxial double-layer insulation model[J].IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(1):33-41.
- [13]迟庆国,李振,张天栋,等.钛酸铜钙纳米纤维/液体硅橡胶复合介质非线性电导性能[J].复合材料学报,2019,36(10):2247-2258.
- [14]贾志东,张雨津,范伟男,等.10 kV XLPE电缆冷缩中间接头界面压力计算分析[J].高电压技术,2017,43(2):661-665.
- [15]樊友平,武利会,康李一,等.110 kV XLPE电缆GIS内锥插拔式快速中间接头的设计[J].高电压技术,2016,42(2):485-495.
- [16]王俊泼,徐鑫,詹清华,等.冷缩型中压电缆附件尖端放电特性[J].广东电力,2017,30(8):100-103.
- [17]徐明忠,梁正波,翟浩琪,等.色泽改变对超高压电缆接头绝缘性能的影响[J].高电压技术,2019,45(11):3445-3451.
- 冷缩中间接头
- 增强绝缘
- 屏蔽管
- 电场分布
- 结构优化
cold shrink joint - reinforced insulation
- screen tube
- electric field distribution
- structure optimization