基于改进隐马尔可夫模型的金属氧化物避雷器劣化监测方法An MOA Deterioration Monitoring Method Based on an Improved HMM
方逸越,方文田,李涛,朱育钊,陈晓彬
FANG Yiyue,FANG Wentian,LI Tao,ZHU Yuzhao,CHEN Xiaobin
摘要(Abstract):
针对MOA(金属氧化物避雷器)劣化监测问题,提出一种基于改进HMM(隐马尔可夫模型)的监测方法。该方法通过获取变电站内MOA泄漏电流数据,建立应用于MOA劣化监测的改进HMM模型;根据变电站内连接于同一母线的MOA泄漏电流的谐波含量,应用D-S证据融合理论与粒子群算法得出HMM观测概率矩阵。通过MATLAB仿真分析了电网电压谐波对该模型的影响,结果表明,在电压谐波的干扰下,MOA非线性特性系数a与k的最大误差分别为0.21%与0.02%,证明了该模型可以有效消除电网电压谐波的影响,提升MOA劣化在线监测的准确性。
In view of MOA(metal-oxide arrester)deterioration monitoring,a monitoring method based on an improved hidden Markov model(HMM)is proposed. An improved HMM model used for MOA deterioration monitoring is established by obtaining MOA leakage current data in a substation. According to the MOA leakage current harmonics content of the same bus in the substation,the HMM observation probability matrix is obtained using D-S(Dempster-Shafter)evidence fusion theory and particle swarm optimization. The influence of grid voltage harmonics on the model is studied by MATLAB simulation. The simulation results show that the maximum errors of MOA nonlinear characteristic coefficients a and k are 0.21% and 0.02%,respectively,under the interference of voltage harmonics. It has been proved that the model can counteract the influence of power grid voltage harmonics and improve the online monitoring accuracy of MOA deterioration.
关键词(KeyWords):
金属氧化物避雷器;隐马尔可夫模型;劣化监测;谐波干扰;在线监测
MOA;HMM;deterioration monitoring;harmonic disturbance;online monitoring
基金项目(Foundation): 广东电网有限责任公司揭阳供电局职创项目(GDZC202205010003)
作者(Author):
方逸越,方文田,李涛,朱育钊,陈晓彬
FANG Yiyue,FANG Wentian,LI Tao,ZHU Yuzhao,CHEN Xiaobin
DOI: 10.19585/j.zjdl.202206010
参考文献(References):
- [1]严璋.电气绝缘在线检测技术[M].北京:中国电力出版社,1995.
- [2]万帅,许衡,惠康,等.电阻片介电常数对GIS罐式避雷器电位分布的影响[J].电瓷避雷器,2020(1):42-46.
- [3]沙胜,高锦锋,李超,等.用于特高压的避雷器故障检测方法研究[J].电测与仪表,2020,57(7):113-119.
- [4]王建,杜志叶,邹建明,等.基于阻容网络的避雷器三相耦合干扰电流向量补偿法[J].电瓷避雷器,2020(2):125-130.
- [5]丛日立,阎欣欣,赵理,等.金属氧化物避雷器在快速瞬态下的动态特性的数值研究[J].电瓷避雷器,2020(3):196-201.
- [6]中国南方电网公司.电力设备预防性试验规程:Q/CSG114002-2011[S].广州:中国南方电网公司,2011.
- [7]张昊,王睿,于灏.基于多层支持矢量机的金属氧化物避雷器在线监测系统[J].电瓷避雷器,2020(1):59-65.
- [8]张源,成诚,张亮,等.避雷器全状态感知系统的研制[J].电工技术,2021(6):123-124.
- [9]于忠江,杨仲江,林逸竞.优化的SOA算法在MOA老化在线监测中的应用[J].电瓷避雷器,2019(4):10-16.
- [10]MASUME K,MOHAMMAD M,SEYYEDMEYSM S.Metal oxide surge arrester condition monitoring based on analysis of leakage current components[J].Electrical Power and Energy Systems,2015(6):188-193.
- [11]ZEINODDINI-MEYMAND H,VAHIDI B,Naghizadeh R A,et al.Optimal surge arrester parameter estimation using a PSO-based multiobjective approach[J].Power Delivery,IEEE Transactions on,2013,28(3):1758-1769.
- [12]左迎芝,曹洪亮,韩通,等.基于粒子群算法的金属氧化物避雷器老化监测研究[J].高压电器,2016(52):113-118.
- [13]陈达波.人工鱼群算法在金属氧化物避雷器在线监测中的应用[J].电瓷避雷器,2016(3):105-109.
- [14]冯宇,王晓琪,陈晓明,等.电容式电压互感器电路参数对电网谐波电压测量的影响[J].中国电机工程学报,2014,34(28):4968-4975.
- [15]李谦,彭刚,董玉玺,等.无间隙金属氧化物避雷器带电测试存在的问题及其解决方案[J].南方电网技术,2018,12(6):23-29.
- [16]段晓波,朱明星,胡文平,等.影响电容式电压互感器谐波传递特性的关键参数[J].电网技术,2014,38(11):3153-3159.
- [17]SADANANDAM M.HMM based language identification from speech utterances of popular indic languages using spectral and prosodic features[J].Traitement du Signal,2021,38(2):521-528.
- [18]霍纬纲,王慧芳.基于自编码器和隐马尔可夫模型的时间序列异常检测方法[J].计算机应用,2020,357(5):93-98.
- [19]阮羚,谢齐家,高胜友,等.人工神经网络和信息融合技术在变压器状态评估中的应用[J].高电压技术,2014,40(3):822-828.
- [20]赵斌,王刚,宋婧妍,等.基于粒子群算法的LCLC谐振变换器优化设计[J].电子与信息学报,2021,43(6):1622-1629.
- [21]韩平平,范桂军,孙维真,等.基于数据测试和粒子群优化算法的光伏逆变器LVRT特性辨识[J].电力自动化设备,2020,40(2):49-54.
- [22]郝双,曹云东,耿莉娜,等.多芯体避雷器时变温度场仿真研究[J].电器与能效管理技术,2020(3):23-27.
- [23]夏强峰,屠晔炜,吴伟江,等.避雷器在线监测仪试验装置的改进与应用[J].电器与能效管理技术,2017(24):57-60.
- [24]于忠江,梁景峰,李文星,等.MOA在线监测存在的问题探讨[J].电瓷避雷器,2020(6):144-150.
- [25]张昊,王睿,于灏.基于多层支持矢量机的金属氧化物避雷器在线监测系统[J].电瓷避雷器,2020(1):59-65.