基于复合波形识别算法的“飞点”检测和还原方案研究Research on Flying Spot Detection and Recovery Scheme Based on Composite Waveform Recognition Algorithm
王瀚杰,黄棋悦,夏冰冰
WANG Hanjie,HUANG Qiyue,XIA Bingbing
摘要(Abstract):
智能变电站以全站信息的数字化为基本要求,利用数字采样代替传统的模拟采样,采样装置数量大大增加。站域保护对数字采样的可靠性提出了更高要求,而SV(采样值)中存在大幅值"飞点"(数据异常点)是引起保护误动的主要原因。在深入研究"飞点"产生原因及其特征的基础上,提出一种基于复合波形识别算法的"飞点"检测和还原方案:采用基于积分型波形对称法和导数型波形识别法的复合波形识别算法,利用标准正弦波窗的概念,能迅速、准确地识别"飞点"数据。另外,根据正弦恢复算法可对"飞点"数据进行修复,无需闭锁判据即可保证保护的可靠性。通过建立PSCAD仿真模型,模拟单个"飞点"和连续"飞点"的正常运行和短路故障时波形,验证了所提"飞点"识别及修复方案的可靠性。仿真结果证明,保护装置动作正常,不会发生误动、拒动。
Digitization of intelligent substation information, as required, substitutes analog sampling for digital sampling, resulting in a great increase in sampling devices. Substation area protection poses a higher requirement for digital sampling reliability, and the large-amplitude flying spots(data anomaly points) in SV(sampling value) are the major causes of protection maloperation. By study on the reason and characteristics of flying spots, the paper presents a flying spot detection and recovery scheme based on a composite waveform recognition algorithm: a composite waveform recognition algorithm based on integral waveform symmetry and derivative waveform symmetry that can correctly identify flying spot data via sinusoidal wave window. Besides, the flying spot data is recovered by the sinusoidal recovery algorithm, and the protection reliability can be guaranteed without block criterion. By the establishment of the PSCAD simulation model, waveforms of a single flying spot and a successive flying spot in normal operation and short-circuit fault are simulated to verify the effectiveness of the scheme. The simulation result shows that the protection devices operate normally,and there is neither maloperation nor operation refusal.
关键词(KeyWords):
混合波形识别;“飞点”;采样值;正弦恢复;标准波窗
composite waveform recognition;flying spot;sampling value;sinusoidal recovery;standard wave window
基金项目(Foundation): 宁波市产业技术创新重大项目(2016B10012);; 宁波市自然科学基金(2018A610074)
作者(Author):
王瀚杰,黄棋悦,夏冰冰
WANG Hanjie,HUANG Qiyue,XIA Bingbing
DOI: 10.19585/j.zjdl.202009006
参考文献(References):
- [1]张旭泽,郑永康,康小宁,等.智能变电站继电保护系统所面临的若干问题[J].电力系统保护与控制,2018,46(6):90-96.
- [2]郑浩,邢家维,黎敏,等.基于站域信息波形形态比较的数据异常及CT断线闭锁判据[J].智慧电力,2019,47(4):110-117.
- [3]周涛,黄雅星.提高智能变电站采样可靠性的研究[J].自动化应用,2018(2):98-99.
- [4]刘颖.提高智能变电站采样可靠性的研究与应用[J].电力系统保护与控制,2016,44(19):150-156.
- [5]冯正伟,汪铭峰,梁慧,等.智能变电站MMS通信异常案例分析[J].浙江电力,2018,37(10):38-43.
- [6]杨涛,胡勇,罗列琥.智能变电站继电保护SV及GOOSE输入自动测试方法[J].浙江电力,2017,36(7):1-5.
- [7]吴文举,占捷文.基于可去间断点的连续采样飞点检测算法[J].电力系统保护与控制,2015,43(4):18-24.
- [8]顾煜炯,杨楠,刘璐,等.基于序列数据异常趋势识别的故障诊断方法[J].电力系统自动化,2019,43(15):146-151.
- [9]郭倩雯,莫文雄,郑方晴.一种基于部分Hau sdorff距离的励磁涌流识别新方法[J].电力系统保护与控制,2019,47(1):35-42.
- [10]吴通华,蒋雷海,李友军,等.电力系统电气量异常采样值实时辨识方法[J].电力系统自动化,2011,35(23):95-98
- [11]严英杰,盛戈皞,陈玉峰,等.基于大数据分析的输变电设备状态数据异常检测方法[J].中国电机工程学报,2015,35(1):52-59.
- [12]杨茂,杨琼琼.基于云分段最优熵算法的风电机组异常数据识别研究[J].中国电机工程学报,2018,38(8):2294-2301.
- [13]梁寿愚,方文崇,王瑾,等.基于图规则化低秩矩阵恢复的用电数据修复与异常检测[J].电力系统自动化,2019,43(21):221-230.
- [14]姚力,胡瑛俊,吴剑芳,等.智能变电站电能计量中非整周期采样的误差分析与补偿[J].浙江电力,2015,34(9):1-5.
- [15]朱继红,须雷,董隽,等.基于组网的智能变电站采样对时问题探讨[J].浙江电力,2016,35(2):18-22.
- [16]张秋雁,岑远洪,安静,等.基于用电大数据的用电异常状态辨识方法[J].电力大数据,2019(5):41-48.
- [17]谢荣斌,马春雷,张丽娟,等.基于改进K-means聚类的变压器异常状态识别模型[J].电力大数据,2018(5):24-30.
- [18]王立斌,李振东,姚杨,等.一种用电信息采集系统异常电量数据的识别与修复方法[J].电力大数据,2018(3):74-78.
- [19]邵丹,石立彬,史静远,等.供电企业基于三层分析模型的线损异常分析及处理研究[J].电力大数据,2019(10):78-83.