浙江电力

2025, v.44;No.346(02) 124-132

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于余弦相似度的GIS放电谱图识别精度提高方法
A cosine similarity-based method for improving the accuracy of GIS discharge spectrum recognition

陈孝信,周童浩,刘江明,戴鹏飞,刘延琦,李文栋,张冠军
CHEN Xiaoxin,ZHOU Tonghao,LIU Jiangming,DAI Pengfei,LIU Yanqi,LI Wendong,ZHANG Guanjun

摘要(Abstract):

研究有效的特征提取及优选算法是提高GIS(气体绝缘封闭组合电器)局部放电检测准确性的有效手段。为了有效利用放电谱图的相位信息,提高GIS局部放电检测的精度和可靠性,提出了一种基于余弦相似度的局部放电模式识别神经网络。通过分析每种放电类型的谱图,总结出相位特征,并将每种放电类型的特征与待判断的放电谱进行比较,得到图像的相位参考量,再引入网络结构中进行训练。研究结果表明,引入余弦相似度计算后,神经网络的正确率提升了3.9%,且提升效果与谱图的相位特征有关,采集谱图的相位特征越明显,余弦相似度模块对精度提高的效果就越显著。该方法可以提高局部放电故障识别的精度,为GIS提供预警和故障评估功能。
The study of effective feature extraction and optimization algorithms is crucial for improving the accuracy of partial discharge(PD) detection in gas-insulated switchgear(GIS). To enhance the precision and reliability of GIS partial discharge detection by utilizing the phase information in discharge spectra, this paper proposes a neural network-based PD pattern recognition method that incorporates cosine similarity. By analyzing the spectra of various discharge types, phase features are summarized, and the features of each discharge type are compared with the spectrum of the discharge under evaluation. The resulting phase reference values are incorporated into the network structure for training. The research findings demonstrate that introducing cosine similarity calculations enhances the neural network's accuracy by 3.9%, and that the improvement is closely related to the spectral phase features—greater phase feature clarity leads to more substantial accuracy gains from the cosine similarity module. This method significantly improves PD fault recognition accuracy, equipping GIS with enhanced warning and fault evaluation capabilities.

关键词(KeyWords): 气体绝缘封闭组合电器;局部放电;神经网络;余弦相似度计算;放电相位谱图
GIS;PD;neural network;cosine similarity calculation;discharge phase spectrum

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(B311DS23000K)

作者(Author): 陈孝信,周童浩,刘江明,戴鹏飞,刘延琦,李文栋,张冠军
CHEN Xiaoxin,ZHOU Tonghao,LIU Jiangming,DAI Pengfei,LIU Yanqi,LI Wendong,ZHANG Guanjun

DOI: 10.19585/j.zjdl.202502012

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享