浙江电力

2025, v.44;No.355(11) 25-34

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于复合加权人类学习算法的锅炉-汽轮机系统建模
Boiler-turbine system modeling using composite weighted human learning optimization network

王能,冯旭波
WANG Neng,FENG Xubo

摘要(Abstract):

锅炉-汽轮机系统是超超临界发电机组中最主要的工作系统之一,具有高度非线性、强耦合性等特点,并受到各种不确定性和干扰的影响。因此,提出一种基于CWHLO(复合加权人类学习网络)的多变量建模方法,以智能分区、局部建模和实时融合的形式建立动态线性模型,可基于负荷需求实时更改局部模型权重,来描述锅炉-汽轮机组的非线性运行过程。仿真结果表明,在强耦合和非线性的情况下CWHLO建模效果仍较显著,可为其他控制方法提供理论依据。
As core subsystems in ultra-supercritical power generation units, boiler-turbine systems exhibit high nonlinearity, strong coupling, and vulnerability to various uncertainties and disturbances. To address these challenges, this paper proposes a multivariate modeling approach utilizing the composite weighted human learning optimization network(CWHLON). The method establishes dynamic linear models through intelligent zoning, localized modeling, and real-time fusion, enabling adaptive adjustment of local model weights according to load demand to accurately represent the nonlinear operational processes of boiler-turbine systems. Simulation results demonstrate that the CWHLON-based modeling maintains excellent performance even under strong coupling and nonlinear conditions, providing a theoretical foundation for other control strategies.

关键词(KeyWords): 复合加权人类学习网络;多变量建模;动态线性模型;锅炉-汽轮机;超超临界机组
CWHLON;multivariate modeling;dynamic linear model;boiler-turbine system;ultra-supercritical unit

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(U24A20592);; 广西广投北海发电有限公司智慧电厂开发项目(GTS2024-257)

作者(Author): 王能,冯旭波
WANG Neng,FENG Xubo

DOI: 10.19585/j.zjdl.202511003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享