电缆次周期扰动电压特征提取方法A feature extraction method of cable sub-cycle disturbance voltage
任广振,王云鹤,曹俊平,李乃一,雍静
REN Guangzhen,WANG Yunhe,CAO Junping,LI Naiyi,YONG Jing
摘要(Abstract):
电缆发生绝缘缺陷时会引发次周期扰动电压现象,提取扰动电压特征对及时检测绝缘缺陷、保障电缆安全运行具有重要意义。对此,提出了一种电缆次周期扰动电压特征提取方法。首先,通过试验获取电缆次周期扰动电压波形并定义扰动波形的时间和幅值两个特征参数。然后,通过STKF(强跟踪卡尔曼滤波)快速跟踪电压幅值变化,设置自适应参数抑制GMM(高斯混合模型)的参数波动,结合STKF与GMM提取扰动电压特征参数。最后,通过试验获取的扰动电压数据进行算法测试,并分析高斯混合模型中自适应参数、采样频率、检测算法的死区对特征参数提取的影响。MATLAB仿真结果表明,电压采样频率在2.25 kHz及以上时计算结果相对稳定,验证了所提方法能够提取电缆次周期扰动电压特征参数。
When insulation defects arise in cables, they trigger the occurrence of sub-cycle disturbance voltage, making it imperative to extract the disturbance voltage features for timely defect detection and ensuring safe operation. To address this need, a method for extracting cable sub-cycle disturbance voltage features is introduced.Firstly, the cable's sub-cycle disturbance voltage waveform is obtained through testing, and two characteristic parameters, namely time and amplitude, are defined for the disturbance waveform. Subsequently, voltage amplitude changes are rapidly tracked using the strong tracking Kalman filter(STKF). Adaptive parameters are established to suppress fluctuations in the parameters of the Gaussian mixture model(GMM), facilitating the extraction of disturbance voltage characteristic parameters through the combined use of STKF and GMM. The algorithm is then tested using disturbance voltage data obtained from experiments, and the effects of adaptive parameters, sampling frequency, and the detection algorithm's dead zone within the Gaussian mixture model on the extraction of characteristic parameters are analyzed. MATLAB simulation results demonstrate that the computational outcomes remain relatively stable when the voltage sampling frequency is set at 2.25 kHz and above. This validation underscores the method's capability to extract characteristic parameters related to cable sub-cycle disturbance voltage.
关键词(KeyWords):
电缆绝缘缺陷;次周期电压;强跟踪卡尔曼滤波;高斯混合模型
cable insulation defect;sub-cycle voltage;strong tracking Kalman filter;Gaussian mixture model
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS20007P)
作者(Author):
任广振,王云鹤,曹俊平,李乃一,雍静
REN Guangzhen,WANG Yunhe,CAO Junping,LI Naiyi,YONG Jing
DOI: 10.19585/j.zjdl.202312006
参考文献(References):
- [1] KULKARNI S,ALLEN A J,CHOPRA S,et al.Waveform characteristics of underground cable failures[C]//IEEE PES General Meeting,July 25-29,2010,Minneapolis,MN,USA:IEEE,2010:1-8.
- [2] MOGHE R,MOUSAVI M J,STOUPIS J,et al.Field investigation and analysis of incipient faults leading to a catastrophic failure in an underground distribution feeder[C]//2009 IEEE/PES Power Systems Conference and Exposition,March 15-18,2009,Seattle,WA,USA:IEEE,2009:1-6.
- [3] SIDHU T S,XU Z H.Detection of incipient faults in distribution underground cables[J]. IEEE Transactions on Power Delivery,2010,25(3):1363-1371.
- [4]汪颖,卢宏,杨晓梅,等.堆叠自动编码器与S变换相结合的电缆早期故障识别方法[J].电力自动化设备,2018,38(8):117-124.WANG Ying,LU Hong,YANG Xiaomei,et al.Cable incipient fault identification based on stacked autoencoder and S-transform[J]. Electric Power Automation Equipment,2018,38(8):117-124.
- [5]姚海燕,张静,留毅,等.基于多尺度小波判据和时频特征关联的电缆早期故障检测和识别方法[J].电力系统保护与控制,2015,43(9):115-123.YAO Haiyan,ZHANG Jing,LIU Yi,et al. Method of cable incipient faults detection and identification based on multi-scale wavelet criterions and time-frequency feature association[J]. Power System Protection and Control,2015,43(9):115-123.
- [6]汪颖,孙建风,肖先勇,等.基于优化卷积神经网络的电缆早期故障分类识别[J].电力系统保护与控制,2020,48(7):10-18.WANG Ying,SUN Jianfeng,XIAO Xianyong,et al.Cable incipient fault classification and identification based on optimized convolution neural network[J]. Power System Protection and Control,2020,48(7):10-18.
- [7] GHANBARI T.Kalman filter based incipient fault detection method for underground cables[J].IET Generation,Transmission&Distribution,2015,9(14):1988-1997.
- [8] ZHANG W H,XIAO X Y,ZHOU K,et al.Multicycle incipient fault detection and location for medium voltage underground cable[J]. IEEE Transactions on Power Delivery,2017,32(3):1450-1459.
- [9] SAMET H,TAJDINIAN M,KHALEGHIAN S,et al.A statistical-based criterion for incipient fault detection in underground power cables established on voltage waveform characteristics[J]. Electric Power Systems Research,2021,197:107303.
- [10] SAMET H,KHALEGHIAN S,TAJDINIAN M,et al.A similarity-based framework for incipient fault detection in underground power cables[J]. International Journal of Electrical Power&Energy Systems,2021,133:107309.
- [11] CHANG G W,HONG Y H,LI G Y.A hybrid intelligent approach for classification of incipient faults in transmission network[J].IEEE Transactions on Power Delivery,2019,34(4):1785-1794.
- [12]汪飞,全晓庆,任林涛.电能质量扰动检测与识别方法研究综述[J].中国电机工程学报,2021,41(12):4104-4121.WANG Fei,QUAN Xiaoqing,REN Lintao. Review of power quality disturbance detection and identification methods[J]. Proceedings of the CSEE,2021,41(12):4104-4121.
- [13] DENG J Y,ZHANG W H,YANG X M.Recognition and classification of incipient cable failures based on variational mode decomposition and a convolutional neural network[J].Energies,2019,12(10):2005.
- [14] LI B Z,JING Y D,XU W.A generic waveform abnormality detection method for utility equipment condition monitoring[J].IEEE Transactions on Power Delivery,2017,32(1):162-171.
- [15] BASTOS A F,SANTOSO S. Universal waveshapebased disturbance detection in power quality data using similarity metrics[J].IEEE Transactions on Power Delivery,2020,35(4):1779-1787.
- [16]瞿科,张文海,肖先勇,等.基于波形衰减因子的电缆接头绝缘早期故障状态监测[J].高电压技术,2022,48(1):318-327.QU Ke,ZHANG Wenhai,XIAO Xianyong,et al.Condition monitoring for incipient faults of cable joint insulation based on waveform attenuation factor[J]. High Voltage Engineering,2022,48(1):318-327.
- [17]王伟,李开成,许立武,等.基于一维卷积神经网络多任务学习的电能质量扰动识别方法[J].电测与仪表,2022,59(3):18-25.WANG Wei,LI Kaicheng,XU Liwu,et al.Power quality disturbance recognition method based on multi-task learning and one-dimensional convolutional neural network[J].Electrical Measurement&Instrumentation,2022,59(3):18-25.
- [18] HE S F,LI K C,ZHANG M.A new transient power quality disturbances detection using strong trace filter[J].IEEE Transactions on Instrumentation and Measurement,2014,63(12):2863-2871.
- [19] BOLLEN M H J,GU I Y H.Signal processing of power quality disturbances[M]. Hoboken:Wiley-IEEE Press,2006.
- [20]刘旭洋,赵玉岩.高斯混合模型在水系沉积物地球化学异常圈定中的应用:以湖南省溆浦地区为例[J/OL].地质科技通报:1-11[2022-02-02].DOI:10.19509/j.cnki.dzkq.2022.0263.Liu Xuyang,Zhao Yuyan.Gaussian mixture model in geochemical anomaly delineation of stream sediments:A case study of Xupu,Hunan Province[J/OL].Bulletin of Geological Science and Technology:1-11[2022-02-02].DOI:10.19509/j.cnki.dzkq.2022.0263.
- 电缆绝缘缺陷
- 次周期电压
- 强跟踪卡尔曼滤波
- 高斯混合模型
cable insulation defect - sub-cycle voltage
- strong tracking Kalman filter
- Gaussian mixture model