浙江电力

2024, v.43;No.334(02) 126-136

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于深度强化学习的多能流楼宇低碳调度方法
A low-carbon scheduling method for multi-energy flow buildings based on deep reinforcement learning

胥栋,李逸超,李赟,徐刚,杜佳玮
XU Dong,LI Yichao,LI Yun,XU Gang,DU Jiawei

摘要(Abstract):

建筑减排已成为中国达到“双碳”目标的重要途径,智慧楼宇作为多能流网络耦合的综合能源主体,面临碳排放量较多、多能流网络耦合程度高、负荷用能行为动态特性明显等问题。针对这一问题,提出基于深度强化学习的多能流楼宇低碳调度方法。首先,根据智慧楼宇的实际碳排放量,建立了一种奖惩阶梯型碳排放权交易机制。其次,面向碳市场和多能流耦合网络,以最小化运行成本为目标函数,建立多能流低碳楼宇调度模型,并将该调度问题转换为马尔可夫决策过程。然后,利用Rainbow算法进行优化调度问题的求解。最后,通过仿真分析验证了优化调度模型的可行性及有效性。
Building emissions reduction has become a crucial pathway for China to achieve its 'dual-carbon' goals.As an integrated energy entity coupled with multi-energy flow networks, smart buildings face challenges such as high carbon emissions, a high degree of coupling in multi-energy flow networks, and distinct dynamic characteristics in load energy consumption behavior. In response to these challenges, a low-carbon scheduling method for multienergy flow buildings based on deep reinforcement learning(deep RL) is proposed. Firstly, a reward and punishment ladder-type carbon emissions trading mechanism is established based on the actual carbon emissions of smart buildings. Secondly, targeting the carbon market and multi-energy flow coupling networks, a low-carbon scheduling model for multi-energy flow buildings is developed, aiming to minimize operating costs as the objective function, and the scheduling is transformed into a Markov decision process(MDP). Subsequently, the Rainbow algorithm is employed to solve the optimal scheduling. Finally, the feasibility and effectiveness of the optimal scheduling model are verified through simulation analysis.

关键词(KeyWords): “双碳”目标;多能流;低碳调度;深度强化学习
'dual-carbon' goals;multi-energy flow;low-carbon scheduling;deep RL

Abstract:

Keywords:

基金项目(Foundation): 国网上海市电力公司浦东供电公司营销项目(640921220001)

作者(Author): 胥栋,李逸超,李赟,徐刚,杜佳玮
XU Dong,LI Yichao,LI Yun,XU Gang,DU Jiawei

DOI: 10.19585/j.zjdl.202402014

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享