基于定向电流指令的构网变流器故障限流策略A fault current limiting control strategy for GFM converters based on directional current command
汪楠楠,邹强,卢宇,阎鹏伟,田杰,詹长江
WANG Nannan,ZOU Qiang,LU Yu,YAN Pengwei,TIAN Jie,ZHAN Changjiang
摘要(Abstract):
构网控制技术可使变流器实现类似同步发电机的频率和电压支撑响应,有助于提高新型电力系统稳定性,其难点之一是在故障限流的同时提供支撑。为此,提出一种基于端口电压和内电势的压差进行电流指令定向的构网变流器故障限流策略。在该方法中,正、负序电流指令的角度分别滞后于正、负序压差90°,电流指令合成向量的最大幅值为变流器的过流能力,相当于通过控制分别产生正、负序自适应虚拟电感。该方法不需要直接计算虚拟电感值,且能够发挥变流器的最大支撑能力,实现类似同步发电机的故障电流特性。通过PSCAD/EMTDC搭建仿真系统,对所提出的故障限流策略进行验证,结果表明该策略能够在限制故障电流的同时对交流系统提供有效支撑。
The grid-forming(GFM) control technology is instrumental in enabling converters to provide frequency and voltage support response akin to synchronous generators, thus bolstering the stability of the new power system.Nonetheless, a notable challenge lies in delivering grid support during fault current limiting. To this end, a strategy for fault current limiting in GFM converters based on measuring terminal and internal differential voltage orientation is proposed. In this approach, the angles of the positive and negative sequence current commands lag 90° behind the positive and negative sequence voltage differences. Additionally, the maximum magnitude of the synthesized vector of the current commands aligns with the converter's overcurrent capability, which is equivalent to the generation of positive and negative sequence adaptive virtual inductance by control, respectively. This method obviates the need for direct virtual inductance value calculations and can maximize the maximum support capacity of the converter to realize the fault current characteristics resembling those of synchronous generators. The proposed fault current limiting strategy is validated by a simulation system built through PSCAD/EMTDC. The simulation outcomes affirm the strategy's efficacy in delivering substantial grid support to the AC system while limiting fault currents.
关键词(KeyWords):
新型电力系统;变流器控制;构网控制;故障限流;压差定向
new power system;converter control;GFM control;fault current limiting;differential voltage orientation
基金项目(Foundation): 国家电网有限公司科技项目(5100-202256369A-2-0-ZN)
作者(Author):
汪楠楠,邹强,卢宇,阎鹏伟,田杰,詹长江
WANG Nannan,ZOU Qiang,LU Yu,YAN Pengwei,TIAN Jie,ZHAN Changjiang
DOI: 10.19585/j.zjdl.202312009
参考文献(References):
- [1]辛保安,郭铭群,王绍武,等.适应大规模新能源友好送出的直流输电技术与工程实践[J].电力系统自动化,2021,45(22):1-8.XIN Baoan,GUO Mingqun,WANG Shaowu,et al.Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J].Automation of Electric Power Systems,2021,45(22):1-8.
- [2]徐潇源,王晗,严正,等.能源转型背景下电力系统不确定性及应对方法综述[J].电力系统自动化,2021,45(16):2-13.XU Xiaoyuan,WANG Han,YAN Zheng,et al.Overview of power system uncertainty and its solutions under energy transition[J]. Automation of Electric Power Systems,2021,45(16):2-13.
- [3]刘泽洪,郭贤珊.含新能源接入的双极柔性直流电网运行特性研究与工程实践[J].电网技术,2020,44(9):3595-3603.LIU Zehong,GUO Xianshan.Operating characteristics research and engineering applicationof voltage source converter based DC GridWith renewable source connected[J].Power System Technology,2020,44(9):3595-3603.
- [4]谢小荣,贺静波,毛航银,等.“双高”电力系统稳定性的新问题及分类探讨[J].中国电机工程学报,2021,41(2):461-475.XIE Xiaorong,HE Jingbo,MAO Hangyin,et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE,2021,41(2):461-475.
- [5]任凯奇,张东英,黄越辉,等.基于新能源出力比例的大规模系统惯量估计[J].电网技术,2022,46(4):1307-1315.REN Kaiqi,ZHANG Dongying,HUANG Yuehui,et al.Large-scale system inertia estimation based on new energy output ratio[J].Power System Technology,2022,46(4):1307-1315.
- [6]王彩霞,时智勇,梁志峰,等.新能源为主体电力系统的需求侧资源利用关键技术及展望[J].电力系统自动化,2021,45(16):37-48.WANG Caixia,SHI Zhiyong,LIANG Zhifeng,et al.Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J].Automation of Electric Power Systems,2021,45(16):37-48.
- [7]陈国平,董昱,梁志峰.能源转型中的中国特色新能源高质量发展分析与思考[J].中国电机工程学报,2020,40(17):5493-5506.CHEN Guoping,DONG Yu,LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE,2020,40(17):5493-5506.
- [8]詹长江.构网支撑型变流系统在新型电力系统中的作用探讨[R/OL].(2021-09-23).https://mp.weixin.qq.com/s/0MXDi5LzyiCp_zSG633dyA.ZHAN Changjiang. Discussion on the function of gridforming converter system in novel power system[R/OL].(2021-09-23).https://mp.weixin.qq.com/s/0MXDi5LzyiCp_zSG633dyA.
- [9]许诘翊,刘威,刘树,等.电力系统变流器构网控制技术的现状与发展趋势[J].电网技术,2022,46(9):3586-3595.XU Jieyi,LIU Wei,LIU Shu,et al.Current state and development trends of power system converter grid-forming control technology[J].Power System Technology,2022,46(9):3586-3595.
- [10] ROCABERT J,LUNA A,BLAABJERG F,et al. Control of power converters in AC microgrids[J]. IEEE Transactions on Power Electronics,2012,27(11):4734-4749.
- [11] ROSSO R,WANG X F,LISERRE M,et al.Grid-forming converters:control approaches,grid-synchronization,and future trends—a review[J].IEEE Open Journal of Industry Applications,2021,2:93-109.
- [12] KERSIC M,MULLER T,LEWIS E,et al.Testing characteristics of grid forming converters part I:Specification and definition of behaviour[C]//19th Wind Integration Workshop 2020. Online:Energynautics,2020.
- [13] OENNINGER R,REICHERT S,ROGALLA S,et al.Testing characteristics of grid forming converters part II:Voltage source properties and contribution to power quality[C]//19th Wind Integration Workshop 2020. Online:Energynautics,2020.
- [14] DY?KO A,EGEA A,HONG Q,et al.Testing characteristics of grid forming converters partⅢ:Inertial behaviour[C]//19th Wind Integration Workshop 2020. Online:Energynautics,2020.
- [15] EMST P,SINGER R,ROGALLA S,et al.Testing characteristics of grid forming converters part IV:Overload behaviour and response to grid faults[C]//19th Wind Integration Workshop 2020.Online:Energynautics,2020.
- [16] WU H,RUAN X B,YANG D S,et al.Small-signal modeling and parameters design for virtual synchronous generators[J]. IEEE Transactions on Industrial Electronics,2016,63(7):4292-4303.
- [17] CHEN J R,PRYSTUPCZUK F,O′DONNELL T. Use of voltage limits for current limitations in grid-forming converters[J].CSEE Journal of Power and Energy Systems,2020,6(2):259-269.
- [18] DENIS G,PREVOST T,DEBRY M S,et al. The migrate project:the challenges of operating a transmission grid with only inverter-based generation. A grid-forming control improvement with transient current-limiting control[J]. IET Renewable Power Generation,2018,12(5):523-529.
- [19] FREYTES J,LI J Q, DE PRéVILLE G,et al. Gridforming control with current limitation for MMC under unbalanced fault ride-through[J]. IEEE Transactions on Power Delivery,2021,36(3):1914-1916.
- [20] DU W,TUFFNER F K,SCHNEIDER K P,et al.Modeling of grid-forming and grid-following inverters for dynamic simulation of large-scale distribution systems[J].IEEE Transactions on Power Delivery,2021,36(4):2035-2045.
- [21] TAUL M G,WANG X F,DAVARI P,et al.Current limiting control with enhanced dynamics of grid-forming converters during fault conditions[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2019,8(2):1062-1073.
- [22] WU H,WANG X F.Small-signal modeling and controller parameters tuning of grid-forming VSCs with adaptive virtual impedance-based current limitation[J].IEEE Transactions on Power Electronics,2022,37(6):7185-7199.
- [23] National Grid Electricity System Operator Limited. National grid:grid code[EB/OL].[2023-01-05]. https://www. nationalgrideso. com/industry-information/codes/grid-code-gc/grid-code-documents.
- 新型电力系统
- 变流器控制
- 构网控制
- 故障限流
- 压差定向
new power system - converter control
- GFM control
- fault current limiting
- differential voltage orientation