基于双锥微钠光纤的GIS微水监测技术Moisture monitoring technology for GIS using dual-cone microfibers
邵先军,陈孝信,姜炯挺,王玉昆,季俊廷,杜厚贤,马国明
SHAO Xianjun,CHEN Xiaoxin,JIANG Jiongting,WANG Yukun,JI Junting,DU Houxian,MA Guoming
摘要(Abstract):
GIS(气体绝缘封闭组合电器)内微水含量升高会降低其绝缘水平。为了实现对GIS内部绝缘气体湿度的在线监测,设计了一种基于双锥微纳光纤的GIS湿度传感器。首先采用BPM(光束传播法)对双锥微纳光纤的光场进行仿真,研究双锥微纳光纤的光场分布与模式干涉理论,得到SF6气体随微水含量的变化规律;然后采用熔融拉锥法制备了双锥微纳光纤湿度传感器,并进行了湿度传感实验。最后结合实验得出结论,基于双锥微纳光纤的湿度传感器检测灵敏度为-51.75 pm/%RH,能够实现对电气设备湿度的连续在线监测。
An increase in moisture content within GIS(gas insulated switchgear) can compromise its insulation integrity. To monitor insulation gas humidity inside GIS, a humidity sensor using dual-cone microfibers is developed.Firstly, utilizing beam propagation method(BPM), the optical field of the dual-cone microfibers is simulated to investigate their field distribution and mode interference theory. This analysis reveals the correlation between SF6 and moisture content. Subsequently, the fused biconical taper(FBT) is used to fabricate the dual-cone microfiber humidity sensor and conduct humidity sensing experiments. Based on the experimental data, it is determined that the humidity sensor using dual-cone microfibers exhibits a detection sensitivity of-51.75 pm/%RH, enabling continuous online monitoring of humidity levels in electrical equipment.
关键词(KeyWords):
GIS;微纳光纤;湿度;传感器
GIS;microfiber;humidity;sensor
基金项目(Foundation): 国家电网有限公司科技项目(5500-202219443A-2-0-ZN)
作者(Author):
邵先军,陈孝信,姜炯挺,王玉昆,季俊廷,杜厚贤,马国明
SHAO Xianjun,CHEN Xiaoxin,JIANG Jiongting,WANG Yukun,JI Junting,DU Houxian,MA Guoming
DOI: 10.19585/j.zjdl.202405013
参考文献(References):
- [1] LIU J,HUANG G M,MA Z Y,et al.A novel smart highvoltage circuit breaker for smart grid applications[J].IEEE Transactions on Smart Grid,2011,2(2):254-264.
- [2]周宏扬,马国明,张猛,等.基于Michelson光纤干涉的GIS局部放电超声信号检测技术[J].中国电机工程学报,2019,39(21):6452-6460.ZHOU Hongyang,MA Guoming,ZHANG Meng,et al.Partial discharge ultrasonic signal detection technology in GIS based on the Michelson fiber optic interferometer[J].Proceedings of the CSEE,2019,39(21):6452-6460.
- [3]庄贤盛,李智,姚唯建,等.SF6电气设备放电故障检测和判断方法[J].广东电力,2008,21(12):35-38.ZHUANG Xiansheng,LI Zhi,YAO Weijian,et al.Detection and judgment of discharge failures of sulphur hexafluoride electrical equipment[J]. Guangdong Electric Power,2008,21(12):35-38.
- [4]王先培,肖伟,胡明宇,等.基于SF6分解产物融合判断的GIS绝缘劣化趋势划分[J].高电压技术,2016,42(6):1834-1840.WANG Xianpei,XIAO Wei,HU Mingyu,et al.GIS insulation deterioration trend division based on SF6 decomposition products fusion judgment[J].High Voltage Engineering,2016,42(6):1834-1840.
- [5]王绍安,何彦良,邵先军,等.H2O对尖端放电缺陷下SF6分解产物含量的影响[J].浙江电力,2019,38(12):87-92.WANG Shaoan,HE Yanliang,SHAO Xianjun,et al.Effect of H2O on the content of SF6 decomposition products under point discharge[J].Zhejiang Electric Power,2019,38(12):87-92.
- [6]颜湘莲,王承玉,杨韧,等.应用SF6气体分解产物的高压开关设备故障诊断[J].电网技术,2011,35(12):118-123.YAN Xianglian,WANG Chengyu,YANG Ren,et al.Fault diagnosis of high voltage switchgears by decomposition products of SF6[J].Power System Technology,2011,35(12):118-123.
- [7]邵先军,谢成,丁五行,等.C4F7N质量流量转换系数测定方法[J].高电压技术,2022,48(5):1791-1797.SHAO Xianjun,XIE Cheng,DING Wuxing,et al. Measurement method of C4F7N mass flow conversion coefficient[J]. High Voltage Engineering,2022,48(5):1791-1797.
- [8]唐炬,李涛,万凌云,等.SF6气体分解组分的多功能试验装置研制[J].高电压技术,2008,34(8):1583-1588.TANG Ju,LI Tao,WAN Lingyun,et al. Device of SF6dissociation apparatus under partial discharge and gaseous decomposition components analysis system[J].High Voltage Engineering,2008,34(8):1583-1588.
- [9]王胜.用露点法检测SF6气体湿度结果的正确判断[J].浙江电力,2009,28(5):58-61.WANG Sheng.Judging measurement result of SF6 gas humidity detected by dew point method[J].Zhejiang Electric Power,2009,28(5):58-61.
- [10]刘杰,毛海波,姜涛,等.SF6密度继电器监测GIS气室压力的误差分析[J].浙江电力,2022,41(2):73-77.LIU Jie,MAO Haibo,JIANG Tao,et al.Error analysis of SF6 density relay in pressure monitoring of GIS chamber[J].Zhejiang Electric Power,2022,41(2):73-77.
- [11] STEELE J J,FITZPATRICK G A,BRETT M J.Capacitive humidity sensors with high sensitivity and subsecond response times[J]. IEEE Sensors Journal,2007,7(6):955-956.
- [12] YOO K P,LIM L T,MIN N K,et al.Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films[J]. Sensors and Actuators B:Chemical,2010,145(1):120-125.
- [13] WANG Y Q,SHEN C Y,LOU W M,et al.Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide[J]. Applied Physics Letters,2016,109(3):031107.
- [14]李咪,马成举,李东明,等.无增敏材料修饰的高灵敏度光纤湿度传感器[J].光子学报,2023,52(2):0206002.LI Mi,MA Chengju,LI Dongming,et al.High-sensitivity fiber-optic humidity sensor without sensitizing material modification[J]. Acta Photonica Sinica,2023,52(2):0206002.
- [15] GAO D,MA G M,QIN W Q,et al.A relative humidity sensor based on non-adiabatic tapered optical fiber for remote measurement in power cable tunnel[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-8.
- [16] WANG Y X,WEBB D,YANG H R.POFBG-based humidity detection method for insulating gas in electrical equipment[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-6.
- [17] WANG Y Q,SHEN C Y,LOU W M,et al.Fiber optic humidity sensor based on the graphene oxide/PVA composite film[J]. Optics Communications,2016,372:229-234.
- [18] JIANG B Q,BI Z X,HAO Z,et al. Graphene oxidedeposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring[J]. Sensors and Actuators B:Chemical,2019,293:336-341.
- [19] ALMEIDA MACHADO D,DE SOUZA COSTA F,CARLOS DE OLIVEIRA A,et al. Sulfur hexafluoride pulsed jet visualization by the Resonant Schlieren method[J].Optics Continuum,2023,2(1):205.
- [20] VUKOVIC D,WOOLSEY G A,SCELSI G B. Refractivities of and at wavelengths of 632.99 and 1 300 nm[J].Journal of Physics D:Applied Physics,1996,29(3):634-637.