浙江电力

2021, v.40;No.307(11) 72-77

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于特征融合Faster R-CNN的电力塔基目标检测
Object Detection of Power Tower Bases Based on Faster R-CNN with Feature Fusion

曹志勇,丰佳,毛文利,李治国,张小燕,赖怀景
CAO Zhiyong,FENG Jia,MAO Wenli,LI Zhiguo,ZHANG Xiaoyan,LAI Huaijing

摘要(Abstract):

为了实现对无人机拍摄的电力塔基地面图像的目标检测,首先,建立了一个高分辨率的电力塔基地面图像数据集,并提出了使用基于Faster R-CNN(快速区域卷积神经网络)改进的目标检测算法提高检测准确率。该方法采用ResNet-50作为Faster R-CNN的主干网络代替VGG-16(卷积神经网络结构),在检测过程中加入了多尺度特征融合技术。最后,将改进的Faster R-CNN电力塔基检测算法与YOLOv4(目标检测算法)和SSD(单发多盒探测器)的检测结果进行对比与分析。结果表明,当IoU(重叠度)阈值为0.75时,算法检测结果的平均精度提升了2.9%;当IoU阈值为0.5时,平均精度提升了0.19%。
For object detection of the power tower base images taken by unmanned drones, a high-resolution image dataset of power tower bases was established, and an improved object detection algorithm based on Faster R-CNN(region-based convolutional neural networks) was proposed to improve the detection accuracy.Instead of VGG-16, a convolutional neural network architecture, this method uses ResNet-50 as the backbone network of Faster R-CNN and integrates multi-scale feature fusion techniques into the detection process.Finally, detection results of the power tower base detection algorithm based on this improved Faster R-CNN,YOLOv4, an object detection algorithm, and SSD(single shot multibox detector) were compared and analyzed. The results show that when the IoU(intersection over union) threshold is 0.75, the accuracy of the detection results of this algorithm averages a 2.9 percent increase, and when the IoU threshold is 0.5, the accuracy averages a 0.19 percent increase.

关键词(KeyWords): 目标检测;快速区域卷积神经网络;电力塔基;通道注意力;多尺度特征融合
object detection;Faster R-CNN;power tower base;channel attention;multi-scale feature fusion

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS18002V)

作者(Author): 曹志勇,丰佳,毛文利,李治国,张小燕,赖怀景
CAO Zhiyong,FENG Jia,MAO Wenli,LI Zhiguo,ZHANG Xiaoyan,LAI Huaijing

DOI: 10.19585/j.zjdl.202111011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享