基于广义Benders分解的分布式光伏接入容量规划方法An integration capacity planning method for distributed photovoltaic sources based on generalized Benders decomposition
陈卓,郭寅远,温彦军,马留军,王留涛,吉小鹏
CHEN Zhuo,GUO Yinyuan,WEN Yanjun,MA Liujun,WANG Liutao,JI Xiaopeng
摘要(Abstract):
针对目前分布式光伏电源大规模接入配电网中带来的问题,提出了基于广义Benders分解的分布式光伏接入容量规划方法。采用数据驱动顺序选择方法确定C-Vine Copula模型中变量的最优顺序,结合拉丁超立方采样方法和场景评估指标,构建典型负荷-资源相关性场景。在生成的典型场景的基础上,建立了基于广义Benders分解的光伏接入规划模型。该模型分为光伏规划主问题与配电网运行子问题,采用线性规划与最优潮流的方法进行求解。在IEEE 33节点系统网架开展算例分析,结果表明,提出的典型场景生成方法比传统方法的资源误差与负荷误差减少50%以上;规划模型求解所需的计算量减小为原来的11%,计算时间缩短为原来的9%。
In response to the challenges of large-scale integration of distributed photovoltaic(PV) sources into distribution networks, an integration capacity planning method for distributed photovoltaic sources based on generalized Benders decomposition(GBD) is proposed. The approach utilizes a data-driven sequential selection method to determine the optimal sequence of variables in the C-Vine Copula model. In combination with Latin hypercube sampling(LHS) and scenario evaluation indicators, typical load-resource correlation scenarios are constructed. Building upon these generated typical scenarios, the paper has established a photovoltaic source integration planning model based on the GBD. This model comprises a main problem for photovoltaic source planning and a sub-problem for distribution network operation, solved using linear programming and optimal power flow methods, respectively.Case studies are conducted on the grid framework of the IEEE 33-bus system. The results demonstrate that the proposed method for generating typical scenarios reduces resource and load errors by over 50% compared to traditional methods. Moreover, the computational complexity of the planning model is reduced by 11%, and the computation time is shortened by 9% compared to previous approaches.
关键词(KeyWords):
C-Vine Copula;数据驱动顺序选择;广义Benders分解;光伏规划主问题;配电网运行子问题
C-Vine Copula;data-driven sequential selection method;GBD;main problem of photovoltaic source planning;sub-problem of distribution network operation
基金项目(Foundation): 国家重点研发计划(2018YFB2100100)
作者(Author):
陈卓,郭寅远,温彦军,马留军,王留涛,吉小鹏
CHEN Zhuo,GUO Yinyuan,WEN Yanjun,MA Liujun,WANG Liutao,JI Xiaopeng
DOI: 10.19585/j.zjdl.202406004
参考文献(References):
- [1]王伟胜.我国新能源消纳面临的挑战与思考[J].电力设备管理,2021(1):22-23.WANG Weisheng.China’s challenges and considerations regarding new energy consumption[J]. Electric Power Equipment Management,2021(1):22-23.
- [2]张颖,艾欣.考虑风光出力不确定性及相关性的配电网规划方法[J/OL].现代电力,1-8[2023-08-01].https://doi.org/10.19725/j.cnki.1007-2322.2022.0258.ZHANG Ying,AI Xin. Distribution network planning method considering uncertainty and correlation of windphotovoltaic power output[J/OL].Modern Electric PowerModern Electric Power:1-8[2023-08-01]. https://doi.org/10.19725/j.cnki.1007-2322.2022.0258.
- [3]胡非,詹习生,涂建,等.基于最优化理论的配电网规划综合评价方法研究[J].湖北师范大学学报(自然科学版),2023,43(2):38-44.HU Fei,ZHAN Xisheng,TU Jian,et al.Research on the comprehensive evaluation method of distribution network planning based on the optimization theory[J]. Journal of Hubei Normal University(Natural Science),2023,43(2):38-44.
- [4]宋宇,李涵.基于核密度估计和Copula函数的风、光出力场景生成[J].电气技术,2022,23(1):56-63.SONG Yu,LI Han.Typical scene generation of wind and photovoltaic power output based on kernel density estimation and Copula function[J].Electrical Engineering,2022,23(1):56-63.
- [5]王建学,李清涛,王秀丽,等.大规模新能源并网系统电源规划方法[J].中国电机工程学报,2020,40(10):3114-3124.WANG Jianxue,LI Qingtao,WANG Xiuli,et al.A generation expansion planning method for power systems with large-scale new energy[J]. Proceedings of the CSEE,2020,40(10):3114-3124.
- [6] MU?OZ-DELGADO G,CONTRERAS J,ARROYO J M.Multistage generation and network expansion planning in distribution systems considering uncertainty and reliability[J]. IEEE Transactions on Power Systems,2016,31(5):3715-3728.
- [7] CHEN H H,FANG X,ZHANG R F,et al. Available transfer capability evaluation in a deregulated electricity market considering correlated wind power[J].IET Generation,Transmission&Distribution,2018,12(1):53-61.
- [8] MALEKPOUR A R,PAHWA A. Stochastic networked microgrid energy management with correlated wind generators[J].IEEE Transactions on Power Systems,2017,32(5):3681-3693.
- [9]赵鉴,袁渤巽,于浩,等.基于风光不确定性和相关性的场景生成[J].能源与节能,2021(8):8-12.ZHAO Jian,YUAN Boxun,YU Hao,et al.Scene generation based on uncertainty and correlation of wind and photovoltaic power[J].Energy and Energy Conservation,2021(8):8-12.
- [10]黎静华,文劲宇,程时杰,等.考虑多风电场出力Copula相关关系的场景生成方法[J].中国电机工程学报,2013,33(16):30-36.LI Jinghua,WEN Jinyu,CHENG Shijie,et al. A scene generation method considering copula correlation relationship of multi-wind farms power[J]. Proceedings of the CSEE,2013,33(16):30-36.
- [11]许彪,徐青山,黄煜,等.基于藤copula分位数回归的光伏功率日前概率预测[J].电网技术,2021,45(11):4426-4434.XU Biao,XU Qingshan,HUANG Yu,et al. Day-ahead probabilistic forecasting of photovoltaic power based on vine copula quantile regression[J]. Power System Technology,2021,45(11):4426-4434.
- [12] SUN M Y,KONSTANTELOS I,STRBAC G. C-vine copula mixture model for clustering of residential electrical load pattern data[J]. IEEE Transactions on Power Systems,2017,32(3):2382-2393.
- [13]赵书强,王皓,张辉,等.计及相关性的风电场和光伏电站时序出力模型研究[J].智慧电力,2020,48(7):52-58.ZHAO Shuqiang,WANG Hao,ZHANG Hui,et al.Wind farm and photovoltaic power station output time series model considering correlation[J].Smart Power,2020,48(7):52-58.
- [14] GUO L,HOU R S,LIU Y X,et al.A novel typical day selection method for the robust planning of stand-alone windphotovoltaic-diesel-battery microgrid[J].Applied Energy,2020,263:114606.
- [15] HEJAZI H A,ARAGHI A R,VAHIDI B,et al.Independent distributed generation planning to profit both utility and DG investors[J].IEEE Transactions on Power Systems,2013,28(2):1170-1178.
- [16]黄远明,张玉欣,夏赞阳,等.考虑需求响应资源和储能容量价值的新型电力系统电源规划方法[J].上海交通大学学报,2023,57(4):432-441.HUANG Yuanming,ZHANG Yuxin,XIA Zanyang,et al.Power system planning considering demand response resources and capacity value of energy storage[J].Journal of Shanghai Jiao Tong University,2023,57(4):432-441.
- [17]刘丽军,吴桐,陈贤达,等.基于时空特性以及需求响应的DG和EV充电站多目标优化配置[J].电力自动化设备,2021,41(11):48-56.LIU Lijun,WU Tong,CHEN Xianda,et al. Multiobjective optimal allocation of DG and EV charging station based on space-time characteristics and demand response[J].Electric Power Automation Equipment,2021,41(11):48-56.
- [18]罗雨萌,颜伟,黄正波,等.含可控分布式电源和换电站的配电网协调规划方法[J].电力系统及其自动化学报,2018,30(8):113-118.LUO Yumeng,YAN Wei,HUANG Zhengbo,et al.Coordinated planning method for distribution network including controllable distributed generations and battery swapping station[J].Proceedings of the CSU-EPSA,2018,30(8):113-118.
- [19]杨书强,郭力,刘娇扬,等.应用场景压缩和计及电压调节策略的光伏接入规划[J].电力系统自动化,2018,42(15):31-38.YANG Shuqiang,GUO Li,LIU Jiaoyang,et al.Photovoltaic access planning based on scenario compression and voltage regulation strategy[J]. Automation of Electric Power Systems,2018,42(15):31-38.
- [20]柏一凡,史利波,储欣.考虑源荷时序特性的可再生电源与配电网架协调规划[J].电工技术,2021(23):10-13.BAI Yifan,SHI Libo,CHU Xin.Coordinated planning of renewable power sources and distribution grids considering source-load timing characteristics[J]. Electric Engineering,2021(23):10-13.
- [21] CHAI Y Y,GUO L,WANG C S,et al.Hierarchical distributed voltage optimization method for HV and MV distribution networks[J].IEEE Transactions on Smart Grid,2020,11(2):968-980.