浙江电力

2025, v.44;No.355(11) 72-82

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于Q学习和PCA的分布式光伏集群优化调度
An optimal dispatch strategy for distributed PV clusters based on Q-learning and pinning consensus algorithm

龚迪阳,唐雅洁,高为举,汪湘晋,蒋国栋,付明
GONG Diyang,TANG Yajie,GAO Weiju,WANG Xiangjin,JIANG Guodong,FU Ming

摘要(Abstract):

针对分布式光伏电源出力的间歇性和不确定性引发的配电网电压越限问题,提出基于Q学习和PCA(牵制一致性算法)的分布式光伏集群优化调度策略。首先,构建融合节点电气距离与电压灵敏度的综合指标,并应用DTW(动态时间弯曲)算法实现分布式光伏集群的合理划分。其次,建立考虑集群间功率交互的双层优化调度模型,采用逃生优化算法对模型进行求解。然后,将Q学习与PCA相结合,实现集群内的协同控制。最后,基于某地区电网进行仿真分析,结果表明:所提策略能够增强分布式光伏集群对电网的支撑能力,改善配电网运行水平,提高模型的求解效率,验证了该策略的有效性和优越性。
To address voltage violations in distribution networks caused by the intermittency and uncertainty of distributed photovoltaic(PV) generation, this paper proposes an optimal cluster dispatch strategy integrating Qlearning and pinning consensus algorithm(PCA). First, a composite index merging nodal electrical distance and voltage sensitivity is developed, and the dynamic time warping(DTW) is applied for rational PV cluster partitioning. Second, a bi-level optimal dispatch model accounting for inter-cluster power exchange is established, with the escape optimization algorithm employed to solve the model. Third, Q-learning and PCA enable cooperative intracluster control. Finally, simulation on a regional power grid demonstrate enhanced grid-support capability of PV clusters, improved operational performance of distribution network, higher solution efficiency, and superior effectiveness versus conventional methods.

关键词(KeyWords): 分布式光伏集群;双层优化调度;Q学习;牵制一致性算法
distributed PV cluster;bi-level optimal dispatch;Q-learning;PCA

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS230003)

作者(Author): 龚迪阳,唐雅洁,高为举,汪湘晋,蒋国栋,付明
GONG Diyang,TANG Yajie,GAO Weiju,WANG Xiangjin,JIANG Guodong,FU Ming

DOI: 10.19585/j.zjdl.202511007

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享