高比例光伏发电对浙江电网电力平衡的影响及应对策略The impact of high-proportion photovoltaic power generation on the power balance of Zhejiang power grid and its countermeasures
张思,杨晓雷,阙凌燕,梁梓杨,郭超
ZHANG Si,YANG Xiaolei,QUE Lingyan,LIANG Ziyang,GUO Chao
摘要(Abstract):
为支撑“双碳”目标的实现,以化石能源为主体的传统电力系统将向以新能源为主体的新型电力系统转变。在此背景下,近年来浙江省光伏发电装机容量快速增长。由于光伏发电具有随机性和波动性的特点,高比例光伏的接入对电力系统的调度运行产生了新的影响及挑战。为此在已有针对光伏发电接入对电力系统影响研究的基础上,总结分析了高比例光伏发电对浙江电网发用电平衡的影响及应对策略。首先,基于浙江电网的特点,从典型负荷曲线、电力供应及光伏发电支撑三方面分析了高比例光伏接入对浙江电网的影响。然后,在已知影响的基础上,从短期和中长期两个时间尺度上阐述了浙江电网面临的相关挑战。最后,给出可适应未来高比例光伏接入环境下光伏有效消纳及保证电力平衡的应对策略。
To help to bring about “carbon peaking and carbon neutrality”,the traditional power system with fossil energy as its mainstay will be transformed into a new power system dominated by new energy. Zhejiang province,against such a background,has seen rapid growth in the installed capacity of photovoltaic power generation. Due to the randomness and fluctuation of photovoltaic power generation,high-proportion photovoltaic power has imposed new impact and challenges on the dispatch and operation of power system. Therefore,based on the existing research on the impact of photovoltaic power generation integration on power system,this paper summarizes and analyzes the impact of photovoltaic power generation on the balance of power generation and consumption in Zhejiang power grid,and the countermeasures as well. First,based on the characteristics of Zhejiang power grid,this paper analyzes the impact of high-proportion photovoltaic power integration on Zhejiang power grid from three aspects:typical load curve,power supply,and photovoltaic power generation support. Then,on the basis of the known impact,the relevant challenges are summarized on the short-term and medium and long-term time scales. Finally,a solution that can adapt to the effective consumption of photovoltaics and ensure the balance of the power system with the integration of high-proportion photovoltaic power in the future is proposed.
关键词(KeyWords):
光伏;浙江电网;电力平衡;高弹性电网
photovoltaics;Zhejiang power grid;power balance;highly-resilient power grid
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211JX2000K8)
作者(Author):
张思,杨晓雷,阙凌燕,梁梓杨,郭超
ZHANG Si,YANG Xiaolei,QUE Lingyan,LIANG Ziyang,GUO Chao
DOI: 10.19585/j.zjdl.202211002
参考文献(References):
- [1]习近平.在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL](2020-09-22)[2021-02-22]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.
- [2]舒印彪.发展新型电力系统助力实现“双碳”目标[J].中国电力企业管理,2021(7):8-9.
- [3]习近平.习近平在气候雄心峰会上的讲话[EB/OL].(2020-12-12)[2021-02-22].http://www.gov.cn/xinwen/2020-12/13/content_5569138.htm.
- [4]国家能源局.2019年光伏发电并网运行情况[EB/OL].(2020–02–28)[2021–02–22].http://www.nea.gov.cn/2020-02/28/c_138827923.htm.
- [5]周孝信.双碳目标下我国能源电力系统发展前景和氢能利用[EB/OL].(2021-10-24)[2021-11-11]. http://mp.weixin. qq. com/s?__biz=MzA5MTEwMDY1MA==&mid=2651040769&idx=1&sn=cefd15c9914b6aa1c9041cc5d36b0d1d&chksm=8bf68884bc810192ca03cda470ff36c3ef53f4684470cf8d0585813a0e222effa62e31e7fee6#rd.
- [6]康重庆,姚良忠.高比例可再生能源电力系统的关键科学问题与理论研究框架[J].电力系统自动化,2017,41(9):2-11.
- [7]卢斯煜,周保荣,饶宏,等.高比例光伏发电并网条件下中国远景电源结构探讨[J].中国电机工程学报,2018,38(增刊1):39-44.
- [8] DEETJEN T A,RHODES J D,WeEBBER M E. The impacts of wind and solar on grid flexibility requirements in the electric reliability council of texas[J].Energy,2017,123:637-654.
- [9]王建光,王晶,肖明.“双碳”目标下燃气发电发展问题研究[J].中国电力企业管理,2021(16):52-54.
- [10]王秀丽,武泽辰,曲翀.光伏发电系统可靠性分析及其置信容量计算[J].中国电机工程学报,2014,34(1):15-21.
- [11]王洪坤,王守相,潘志新,等.含高渗透分布式电源配电网灵活性提升优化调度方法[J].电力系统自动化,2018,42(15):86-93.
- [12]张高航,李凤婷.计及源荷储综合灵活性的电力系统日前优化调度[J].电力自动化设备,2020,40(12):159-167.
- [13]陈磊,徐飞,王晓,等.储热提升风电消纳能力的实施方式及效果分析[J].中国电机工程学报,2015,35(17):4283-4290.
- [14]艾欣,陈政琦,孙英云,等.基于需求响应的电-热-气耦合系统综合直接负荷控制协调优化研究[J].电网技术,2019,43(4):1160-1171.
- [15]胡嘉骅,文福拴,马莉,等.电力系统运行灵活性与灵活调节产品[J].电力建设,2019,40(4):70-80.
- [16]郭鸿业,陈启鑫,夏清,等.电力市场中的灵活调节服务:基本概念、均衡模型与研究方向[J].中国电机工程学报,2017,37(11):3057-3066.
- [17]新华社.助力碳中和浙江分布式光伏装机容量超1000万千瓦[EB/OL].(2020-01-12)[2021-03-03].http://www.xinhuanet.com/2021-01/12/c_1126975145.htm.
- [18] DENHOLM P,O’CONNELL M,BRINKMAN G,et al.Overgeneration from solar energy in california. a field guide to the duck chart:NREL/TP-6A20-65023,1226167[R/OL].[2021-11-14]. http://www. osti. gov/servlets/purl/1226167/.
- [19] SIOSHANSI F P.California’s‘duck curve’arrives well ahead of schedule[J]. The Electricity Journal,2016,29:71-72.
- [20]袁桂丽,王宝源,韦杰,等.消纳大规模新能源电力的措施[J].新能源进展,2017,5(4):305-314.
- [21]陆继翔,张琪培,杨志宏,等.基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J].电力系统自动化,2019,43(8):131-137.
- [22]万灿,宋永华.新能源电力系统概率预测理论与方法及其应用[J].电力系统自动化,2021,45(1):2-16.
- [23]国家发展改革委.国家能源局关于开展全国煤电机组改造升级的通知[EB/OL].(2021-10-29)[2021-11-15].http://www. gov. cn/zhengce/zhengceku/2021-11/03/content_5648562.htm.
- [24]国家发展和改革委员会能源研究所.京津冀与德国电力系统灵活性定量比较研究[R].[S.l.:s.n.],2020.
- [25]李昭昱,韦化,胡弘.约束紧凑与调节灵活的核电调峰安全出力模型[J].电力系统自动化,2020,44(4):63-71.
- [26]省发展改革委.省能源局关于开展2021年度电力需求响应工作的通知[EB/OL].(2021-06-08)[2021-08-09].http://fzggw. zj. gov. cn/art/2021/6/8/art_1229123367_2301809.html.
- [27]王一,朱涛,张玉欣,等.适应中国电力现货市场发展的容量补偿机制初探[J].电力系统自动化,2020,45(6):52-61.
- [28]王小海,齐军,姜希伟,等.电力市场中灵活性产品的设计及交易机制研究[J].中国市场,2020(5):65-68.
- [29]杨经纬,张宁,王毅,等.面向可再生能源消纳的多能源系统:述评与展望[J].电力系统自动化,2018,42(4):11-24.
- [30] SHEIKHI A,RAYATI M,BAHRAMI S,et al. Integrated demand side management game in smart energy hubs[J].IEEE Transactions on Smart Grid,2015,6(2):675-683.
- [31]闫晓宇,王小春,寇建玉.基于太阳能热发电的内蒙古电网多能互补配比研究[J].内蒙古电力技术,2019(4):21-25.
- [32]罗韬,王志伟,赵海波.分布式光伏并网点电压控制调整方法研究[J].山西电力,2021(3):30-33.
- [33]毕会静,马燕峰,秦科源,等.不同配置模式下分布式光伏发电并网接纳仿真[J].电力电容器与无功补偿,2021(4):236-241.