基于最小二乘支持向量机的汽轮机低压缸排汽焓计算Calculation of Low-pressure Cylinder Exhaust Enthalpy Based on Least Squares Support Vector Machine
杨斌,柳琦,张芹,高原,雷鸣,余鹏,何皓,刘真全
YANG Bin,LIU Qi,ZHANG Qin,GAO Yuan,LEI Ming,YU Peng,HE Hao,LIU Zhenquan
摘要(Abstract):
为了在线计算汽轮发电机组的经济性,基于LSSVM(最小二乘支持向量机)建立了一种汽轮机低压缸排汽焓在线计算模型。首先分析汽轮机低压缸排汽焓影响因素,确定LSSVM模型的输入变量与输出变量,采集历史数据,数据预处理后剔除明显坏点,再对各参数进行归一化,将其转化为无量纲量,最后将归一化处理后的数据用于LSSVM模型的训练,再用性能试验的数据对模型进行验证,得到基于LSSVM的汽轮机低压缸排汽焓计算模型。结果表明:基于LSSVM的汽轮机低压缸排汽焓计算模型能够有效预测低压缸排汽焓,误差范围在1%以内,低压缸排汽焓的预测值比试验值平均小约5 kJ/kg。低压缸排汽焓的预测值与试验值保持着相同的变化规律。
For online calculation of the economy of steam turbine units, a calculation model for low-pressure cylinder exhaust enthalpy based on LSSVM(least squares support vector machine) is established. Firstly, the influencing factors of low-pressure cylinder exhaust enthalpy are analyzed to determine the input variations and output variations of LSSVM, collect historical data and weed out the bad points after data pre-processing;secondly, the parameters are normalized and converted into dimensionless variables, and then the data after normalization is used for LSSVM model training. Finally, the model is verified by the data of the performance test to obtain a calculation model low-pressure cylinder exhaust enthalpy based on LSSVM. The results show that the calculation model for low-pressure cylinder exhaust enthalpy based on least squares support vector machine can effectively predict low-pressure cylinder exhaust enthalpy, and the error range is within 1%; the predicted value of low-pressure cylinder exhaust enthalpy is 5 kJ/kg smaller than the measured average value;the predicted value and the test value of low-pressure cylinder exhaust enthalpy share the same change law.
关键词(KeyWords):
汽轮机;经济性;排汽焓;最小二乘支持向量机
steam turbine;economy;exhaust enthalpy;LSSVM
基金项目(Foundation):
作者(Author):
杨斌,柳琦,张芹,高原,雷鸣,余鹏,何皓,刘真全
YANG Bin,LIU Qi,ZHANG Qin,GAO Yuan,LEI Ming,YU Peng,HE Hao,LIU Zhenquan
DOI: 10.19585/j.zjdl.201911017
参考文献(References):
- [1]韩中合,杨昆.汽轮机中蒸汽湿度测量方法的研究现状[J].华北电力大学学报,2002,10(4):44-47.
- [2]曹祖庆.汽轮机变工况特性[M].北京:水利电力出版社,1989.
- [3]朱明善.工程热力学[M].北京:清华大学出版社有限公司,1995.
- [4]沈士一,庄贺庆,康松,等.汽轮机原理[M].北京:水利电力出版社,1992.
- [5]任浩仁,盛德仁.汽轮机在线性能计算中排汽焓的确定[J].动力工程,1998,18(6):1-4.
- [6]韩中合,杨昆.凝汽式汽轮机低压缸排汽焓的简便算法与误差分析[J].汽轮机技术,2006,48(3):167-170.
- [7]郭江龙,张树芳,陈海平.火电机组排汽焓在线计算方法的研究[J].发电设备,2001(6):11-14.
- [8]李慧君,孙定,张斌.机组母管制给水系统分配方案的研究[J].华北电力大学学报,2003,30(3):57-61.
- [9]李清海,张衍国,党文达,等.炉排/循环床复合垃圾焚烧炉中垃圾模拟干燥实验[J].清华大学学报(自然科学版),2008,48(5):824-827.
- [10]万辉,魏延.一种改进的最小二乘支持向量机算法[J].重庆师范大学学报(自然科学版),2010,27(4):69-72.
- [11]张春晓,张涛.基于最小二乘支持向量机和粒子群算法的两相流含油率软测量方法[J].中国电机工程学报,2010,30(2):86-91.
- [12]王贺,胡志坚,张翌晖,等.基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J].电工技术学报,2014,29(4):237-245.
- [13]吴秋波,王允诚,赵秋亮,等.混沌惯性权值调整策略的粒子群优化算法[J].计算机工程与应用,2009,45(7):49-51.
- [14]顾燕萍,赵文杰,吴占松.最小二乘支持向量机的算法研究[J].清华大学学报(自然科学版),2010,50(7):1063-1066.
- [15]李霄,王昕,郑益慧,等.基于改进最小二乘支持向量机和预测误差校正的短期风电负荷预测[J].电力系统保护与控制,2015(11):63-69.
- [16]郑含博,王伟,李晓纲,等.基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法[J].高电压技术,2014,40(11):3424-3429.
- [17]杨斌,杨永军,邢乐强,等.基于支持向量机的汽轮机低压缸排汽焓计算[J].节能技术,2018,36(6):45-49.
- [18]董学育,胡华进,等.电站性能分析采样数据的可靠性检验方法[J].动力工程,1998,18(2):16-19.
- [19]张振星,孙保民,信晶.基于自适应遗传算法的锅炉低NOX燃烧建模及其优化[J].热力发电,2014(9):60-64.
- [20]刘彦强,解京选,狄红旗,等.褐煤热解特性及热解动力学研究[J].广州化工,2012,40(3):70-72.
- [21]杨斌,杨永军,张亚,等.基于主成分分析与神经网络复合模型的汽轮机低压缸排汽焓计算[J].中国电力,2018,51(1):126-132.
- [22]秦攀,包劲松,张宝,等.超超临界汽轮机灵活性运行策略研究与展望[J].浙江电力,2018,37(4):78-83.
- [23]丁阳俊,印旭洋,顾正皓,等.600 MW汽轮机通流改造后的顺序阀投运方式研究[J].浙江电力,2019,38(1):33-37.