基于改进粒子群算法的分布式能源系统协同优化运行研究Collaborative Optimal Operation of Distributed Energy System Based on Improved Particle Swarm Optimization
王禹,彭道刚,姚峻,于会群
WANG Yu,PENG Daogang,YAO Jun,YU Huiqun
摘要(Abstract):
分布式能源系统是能源利用的未来趋势,其中协同经济优化运行是实现能量供需平衡、降低能源站成本的关键。首先从冷热电协同优化运行入手,建立了包括三联供系统、离心式冷机、空气源热泵以及风光储在内的分布式能源协同运行优化模型,然后考虑设备约束和系统约束,目标函数综合考虑运行成本和环境成本,采用改进粒子群优化算法求解。结果表明,与粒子群算法和自适应粒子群算法相比,该算法有效避免了局部最优以及后期收敛慢的问题,同时具有更好的优化效果。最后针对国内某示范园区分布式能源系统进行优化验证,所提方法能够有效降低总成本,提高分布式能源系统经济效益,促进可再生能源充分消纳。
Distributed energy is the trend of future energy utilization, and the economic collaborative optimization is the key to achieving energy supply-demand balance and reducing operating costs of energy station. Based on collaborative optimal optimization of cooling, heating and power, the paper constructs a collaborative optimal operation model of distributed energy including cooling-heating-power system, centrifugal chiller, air source heat pump and wind-PV-energy storage system, and considers the conditions of equipment constraints and system constraints. The objective function comprehensively considers the running cost and the environmental cost and introduces improved particle swarm optimization to solve the problem. The results show that compared with particle swarm optimization and adaptive particle swarm optimization, the improved particle swarm optimization can effectively avoid the problems of local optimization and slow convergence, and has better optimization effect. Finally, according to the optimization and verification of distributed energy system in a demonstration park in China, the proposed method can effectively reduce the total cost, improve the operational economic benefits of the distributed energy system and promote the full consumption of renewable energy.
关键词(KeyWords):
分布式能源系统;冷热电三联供;经济优化运行;人工蜂群算子自适应粒子群算法
distribution energy system;CHP;economic and optimal operation;ABC-APSO
基金项目(Foundation): 国家自然科学基金面上项目(71871160);; 上海市“科技创新行动计划”社会发展领域项目(16DZ1202500);; 上海市科学技术委员会工程技术研究中心项目(14DZ2251100)
作者(Author):
王禹,彭道刚,姚峻,于会群
WANG Yu,PENG Daogang,YAO Jun,YU Huiqun
DOI: 10.19585/j.zjdl.201902006
参考文献(References):
- [1]孙宏斌,郭庆来,潘昭光,等.能源互联网:驱动力、评述与展望[J].电网技术,2015,39(11):3005-3013.
- [2]严太山,程浩忠,曾平良,等.能源互联网体系架构及关键技术[J].电网技术,2016,40(1):105-113.
- [3]MAGO P J,CHAMRA L M.Analysis and optimization of CCHP systems based on energy, economical, and environ mental considerations[J].Energy&Buildings,2009,41(10):1099-1106.
- [4]熊焰,吴杰康,王强,等.风光气储互补发电的冷热电联供优化协调模型及求解方法[J].中国电机工程学报,2015,35(14):3616-3625.
- [5]管霖,陈鹏,唐宗顺,等.考虑冷热电存储的区域综合能源站优化设计方法[J].电网技术,2016,40(10):2934-2941.
- [6]杨艳红,裴玮,屈慧,等.基于广义Benders分解的分布式热电联供机组规划方法[J].电力系统自动化,2014,38(12):27-33.
- [7]PIPERAGKAS G S,ANASTASIADIS A G,HATZIARGYRIOU N D.Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units[J].Electric Power Systems Research,2010,81(1):209-218.
- [8]ZHENG C Y,WU J Y,ZHAI X Q.A novel operation strategy for CCHP systems based on minimum distance[J].Applied Energy,2014(128):325-335.
- [9]曾鸣,韩旭,李冉,等.能源互联微网系统供需双侧多能协同优化策略及其求解算法[J].电网技术,2017,41(2):409-417.
- [10]周任军,李绍金,陈瑞先,等.采用模糊自修正粒子群算法的碳排放权交易冷热电多目标调度[J].中国电机工程学报,2014,34(34):6119-6126.
- [11]张鹏,黄越辉,李驰,等.基于公平调度的新能源调度方法[J].科学技术与工程,2018,18(20):252-259.
- [12]刘晶晶.粒子群优化算法的改进与应用[D].武汉:武汉理工大学,2007.
- [13]李军,许丽佳,游志宇.一种带压缩因子的自适应权重粒子群算法[J].西南大学学报(自然科学版),2011,33(7):118-122.
- [14]ZHU G P,KWONG S.Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation,2010,217(7):3166-3173.
- [15]高卫峰,刘三阳,焦合华,等.引入人工蜂群搜索算子的粒子群算法[J].控制与决策,2012,27(6):833-838.