面向低碳需求响应的短流程钢铁企业最优用电策略An optimal electricity consumption strategy for steel enterprises with short processes in the context of low-carbon DR
闫越,冯皓然,郭逸涵,陈翔,宋金伟,张世泽,何琪
YAN Yue,FENG Haoran,GUO Yihan,CHEN Xiang,SONG Jinwei,ZHANG Shize,HE Qi
摘要(Abstract):
目前,钢铁等大型工业企业通过参与电力需求响应虽降低了用电成本,但并未实现减排降碳的目标。为此,提出一种面向低碳需求响应的短流程钢铁企业最优用电策略。首先,利用RTN(资源任务网)对短流程钢铁生产的各阶段进行建模;其次,基于日区域用电碳排放因子曲线及碳价,对参与低碳需求响应的企业用电策略进行优化,充分调度各类生产设备的启停,以实现钢铁企业成本和碳排放量的降低;然后,对钢铁企业在不同场景下参与低碳需求响应的行为进行仿真,得出企业进行低碳需求响应后的优化用电策略,并将优化前后综合成本和减碳量进行对比,证明了所提方法的有效性;最后,探究了碳价和碳排放因子曲线对低碳需求响应的影响。
Currently, large industrial enterprises, such as steel mills, have reduced electricity costs by participating in demand response programs; however, they have not yet achieved their carbon and emission reduction goals.To address this, an optimal electricity consumption strategy is proposed for steel enterprises with short processes in the context of low-carbon demand response(DR). First, the resource-task network(RTN) model is used to model the various stages of short-process steel production. Next, based on daily regional electricity carbon emission factor curves and carbon pricing, the electricity consumption strategy of enterprises participating in low-carbon demand response is optimized. This strategy fully schedules the start-up and shutdown of various production equipment to reduce both the enterprises' energy costs and carbon emissions. Subsequently, the behavior of steel enterprises in participating in low-carbon demand response under different scenarios is simulated, and the optimized electricity consumption strategy after participation is compared with the pre-optimization strategy in terms of total cost and carbon reduction. The results validate the effectiveness of the proposed method. Finally, the impact of carbon pricing and carbon emission factor curves on low-carbon demand response is explored.
关键词(KeyWords):
低碳需求响应;短流程炼钢;资源任务网;用电策略优化;区域用电碳排放因子
low-carbon demand response;short-process steelmaking;RTN;electricity consumption strategy optimization;carbon emission factor for regional electricity consumption
基金项目(Foundation): 国家电网有限公司大数据中心科技项目(SGSJ0000NYJS2400037)
作者(Author):
闫越,冯皓然,郭逸涵,陈翔,宋金伟,张世泽,何琪
YAN Yue,FENG Haoran,GUO Yihan,CHEN Xiang,SONG Jinwei,ZHANG Shize,HE Qi
DOI: 10.19585/j.zjdl.202505009
参考文献(References):
- [1]刘子屹,谢俊,刘雨菁,李德智,等.电力需求侧灵活性系列:钢铁行业灵活性潜力概述[R].北京:落基山研究所,2023.
- [2]孙毅,毛烨华,李泽坤,等.面向电力大数据的用户负荷特性和可调节潜力综合聚类方法[J].中国电机工程学报,2021,41(18):6259-6270.SUN Yi,MAO Yehua,LI Zekun,et al.A comprehensive clustering method of user load characteristics and adjustable potential based on power big data[J].Proceedings of the CSEE,2021,41(18):6259-6270.
- [3]袁金斗,李德智,周颖,等.5G通信网络环境下可调节负荷应用分析[J].电力需求侧管理,2020,22(3):75-79.YUAN Jindou,LI Dezhi,ZHOU Ying,et al.Application analysis of adjustable loads in the environment of 5G communication network[J]. Power Demand Side Management,2020,22(3):75-79.
- [4]程乐园,李文启,张曦,等.基于负荷控制的高风光渗透率地区电网调峰方案[J].电气应用,2019,38(7):84-92.CHENG Leyuan,LI Qiwen,Zhang Xi,et al.Peak shaving regulating scheme based on load control in high wind and photovoltaic power penetration regions[J]. Electrotechnical Application,2019,38(7):84-92.
- [5] CHEN R Z,SUN H B,GUO Q L,et al. Profit-seeking energy-intensive enterprises participating in power system scheduling:model and mechanism[J]. Applied Energy,2015,158:263-274.
- [6] FRAIZZOLI D,RAMIN D,BRUSAFERRI A. A new modeling approach to include EAF flexibility in the energy-aware scheduling of steelmaking process[C]//2020 7th International Conference on Control, Decision and Information Technologies(CoDIT),June 29-July 2,2020,Prague,Czech Republic.IEEE,2020:1063-1068.
- [7]刘树,王元超,石山,等.大型工业企业生产负荷平抑优化策略[J].电力系统及其自动化学报,2017,29(10):138-144.LIU Shu,WANG Yuanchao,SHI Shan,et al. Optimization strategy of production load leveling for large industrial enterprises[J]. Proceedings of the CSU-EPSA,2017,29(10):138-144.
- [8]刘冠中,冯登,张亚伟,等.基于时序调度的钢厂负荷管理方法[J].电气应用,2018,37(4):36-42.LIU Guanzhong,FENG Deng,ZHANG Yawei,et al.Load management method of steel plant based on time sequence scheduling[J].Electrotechnical Application,2018,37(4):36-42.
- [9]晋宏杨,孙宏斌,牛涛,等.考虑风险约束的高载能负荷—风电协调调度方法[J].电力系统自动化,2019,43(16):9-18.JIN Hongyang,SUN Hongbin,NIU Tao,et al. Coordinated dispatch method of energy-extensive load and wind power considering risk constraints[J].Automation of Electric Power Systems,2019,43(16):9-18.
- [10]晋宏杨,孙宏斌,牛涛,等.考虑风电与高载能负荷调度不确定性的鲁棒机组组合[J].电力系统自动化,2019,43(22):13-20.JIN Hongyang,SUN Hongbin,NIU Tao,et al. Robust unit commitment considering uncertainties of wind and energy intensive load dispatching[J].Automation of Electric Power Systems,2019,43(22):13-20.
- [11] ASHOK S.Peak-load management in steel plants[J].Applied Energy,2006,83(5):413-424.
- [12] TAN Y Y,LIU S X.Models and optimisation approaches for scheduling steelmaking-refining-continuous casting production under variable electricity price[J]. International Journal of Production Research,2014,52:1032-1049.
- [13] XU W J,TANG L X,PISTIKOPOULOS E N.Modeling and solution for steelmaking scheduling with batching decisions and energy constraints[J].Computers&Chemical Engineering,2018,116:368-384.
- [14]王海博.计及钢铁生产短流程需求响应潜力的供需互动调度策略研究[D].济南:山东大学,2022.WANG Haibo.Research on supply-demand interaction dispatching strategy considering demand response potential of short production process of steel enterprises[D].Jinan:Shang Dong University,2022.
- [15]罗其华,李平,张少迪.考虑需求响应和阶梯碳交易的虚拟电厂低碳经济调度[J].浙江电力,2023,42(6):51-59.LUO Qihua,LI Ping,ZHANG Shaodi. Low-carbon and economic scheduling of virtual power plant considering demand re-sponse and stepwise carbon trading[J].Zhejiang Electric Power,2023,42(6):51-59.
- [16]文淅宇,朱继忠,李盛林,等.基于时空协同的多数据中心虚拟电厂低碳经济调度策略[J].电力系统自动化,2024,48(18):56-65.WEN Xiyu,ZHU Jizhong,LI Shenglin,et al.Low-carbon economic dispatching strategy of multi-data center virtual power plant based on spatio-temporal collaboration[J].Automation of Electric Power Systems,2024,48(18):56-65.
- [17]陈中,陆舆,邢强,等.考虑电动汽车碳配额的电力系统调度分析[J].电力系统自动化,2019,43(16):44-51.CHEN Zhong,LU Yu,XING Qiang,et al.Dispatch analysis of power system considering carbon quota for electric vehicle[J].Automation of Electric Power Systems,2019,43(16):44-51.
- [18]骆钊,秦景辉,梁俊宇,等.含碳-绿色证书联合交易机制的综合能源系统日前优化调度[J].电力自动化设备,2021,41(9):248-255.LUO Zhao,QIN Jinghui,LIANG Junyu,et al.Day-ahead optimal scheduling of integrated energy system with carbon-green certificate coordinated trading mechanism[J].Electric Power Automation Equipment,2021,41(9):248-255.
- [19]车泉辉,吴耀武,祝志刚,等.基于碳交易的含大规模光伏发电系统复合储能优化调度[J].电力系统自动化,2019,43(3):76-82.CHE Quanhui,WU Yaowu,ZHU Zhigang,et al.Carbon trading based optimal scheduling of hybrid energy storage system in power systems with large-scale photovoltaic power generation[J].Automation of Electric Power Systems,2019,43(3):76-82.
- [20] MELGAR-DOMINGUEZ O D, POURAKBARIKASMAEI M,LEHTONEN M,et al. An economicenvironmental asset planning in electric distribution networks considering carbon emission trading and demand response[J].Electric Power Systems Research,2020,181:106202.
- [21]李姚旺,张宁,杜尔顺,等.基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J].中国电机工程学报,2022,42(8):2830-2841.LI Yaowang,ZHANG Ning,DU Ershun,et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J].Proceedings of the CSEE,2022,42(8):2830-2841.
- [22]张程,曾崟琳,匡宇.考虑需求响应和碳捕集电厂灵活运行方式的综合能源系统调度[J].智慧电力,2024,52(9):88-95.ZHANG Cheng,ZENG Yinlin,KUANG Yu. Integrated energy system scheduling considering demand response and flexible operation of carbon capture power plant[J].Smart Power,2024,52(9):88-95.
- [23]王利猛,刘雪梦,李扬,等.阶梯式碳交易机制下考虑需求响应的综合能源系统低碳优化调度[J].电力建设,2024,45(2):102-114.WANG Limeng,LIU Xuemeng,LI Yang,et al. Lowcarbon optimal dispatch of integrated energy system considering demand response under the tiered carbon trading mechanism[J].Electric Power Construction,2024,45(2):102-114.
- [24]徐慧慧,田云飞,缪猛,等.计及碳交易和需求响应的虚拟电厂低碳经济调度[J].智慧电力,2023,51(8):1-7.XU Huihui,TIAN Yunfei,MIAO Meng,et al.Low carbon economy dispatch of virtual power plants considering carbon trading and demand response[J]. Smart Power,2023,51(8):1-7.
- [25]靳冰洁,李家兴,彭虹桥,等.需求响应下计及电碳市场耦合的多元主体成本效益分析[J].电力建设,2023,44(2):50-60.JIN Bingjie,LI Jiaxing,PENG Hongqiao,et al. Costbenefit analysis of multiple entities under the coupling of electricity and carbon trading market considering demand response[J]. Electric Power Construction,2023,44(2):50-60.
- [26]廖思阳,谢濠聪,徐箭,等.面向需求侧市场化响应交易细则的高耗能负荷需求响应控制策略[J/OL].中国电机工程学报,1-13[2024-10-30].http://kns.cnki.net/kcms/detail/11.2107.TM.20240418.1208.003.html.LIAO Siyang,XIE Haocong,XU Jian,et al.Demand response control strategy for high-energy-consuming loads aligned with demand-side market response transaction rules[J/OL]. Proceedings of the CSEE,1-13[2024-10-30]. http://kns. cnki. net/kcms/detail/11.2107. TM.20240418.1208.003.html.
- [27]翁格平,任娇蓉,姚艳,等.考虑时变电碳因子的园区综合能源系统低碳经济调度[J].浙江电力,2022,41(10):106-114.WENG Geping,REN Jiaorong,YAO Yan,et al. Lowcarbon economic dispatch of industrial park integrated energy system considering time-varying carbon emission factor[J].Zhejiang Electric Power,2022,41(10):106-114.
- [28]李伊竹林,韩肖清,李廷钧,等.基于动态电-碳需求响应的综合能源系统日前多元低碳交易方法[J].电力系统自动化,2024,48(12):24-35.LI Yizhulin,HAN Xiaoqing,LI Tingjun,et al. Multifaceted day-ahead low-carbon trading method for integrated energy systems based on dynamic electricity-carbon demand response[J]. Automation of Electric Power Systems,2024,48(12):24-35.
- [29]叶宇静,邢海军,米阳,等.考虑低碳需求响应及主从博弈的综合能源系统低碳优化调度[J].电力系统自动化,2024,48(9):34-43.YE Yujing,XING Haijun,MI Yang,et al.Low-carbon optimal dispatching of integrated energy system considering low-carbon demand response and Stackelberg game[J].Automation of Electric Power Systems,2024,48(9):34-43.
- [30] PJM.Data miner 2[EB/OL].(2024-02-24)[2024-10-22].https://dataminer2.pjm.com/list,2024-02-24.