35kV低频变压器的轻量化设计方法A lightweight design method for a 35 kV low-frequency transformer
刘黎,尹聪聪,詹江杨,林浩凡,刘云鹏,刘刚
LIU Li,YIN Congcong,ZHAN Jiangyang,LIN Haofan,LIU Yunpeng,LIU Gang
摘要(Abstract):
针对低频变压器铁心尺寸、重量等较传统工频变压器增大的问题,提出了一种35 kV低频变压器的轻量化设计方法,综合考虑变压器损耗、重量和尺寸进行多目标优化。首先,依据国家标准及设计手册给出低频变压器初始结构。然后,选取变压器尺寸、重量与损耗作为优化目标。其次,根据低频变压器特点选取相应的优化变量并给出约束条件。最后,通过遗传算法对低频变压器进行优化设计,并进行对比分析,结果表明,总损耗减少了11.04%,铁心、线圈重量减少了4.36%、6.71%,铁心中心距减少了12.85%。
To Address the issue of increased core size and weight in low-frequency transformers compared to conventional power-frequency transformers, a lightweight design method for a 35 kV low-frequency transformer is proposed. This method involves multi-objective optimization of transformer losses, weight, and dimensions. Firstly, the initial structure of the low-frequency transformer is determined based on national standards and design manuals. Subsequently, transformer size, weight, and losses are selected as optimization objectives. Following this, specific optimization variables are chosen based on the characteristics of low-frequency transformers, and corresponding constraints are defined. Finally, a genetic algorithm is utilized to optimize the low-frequency transformer. A comparative analysis reveals a reduction of 11.04% in total losses, along with a decrease of 4.36% and 6.71% in core and coil weights, respectively, and a 12.85% reduction in core center distance.
关键词(KeyWords):
低频变压器;多目标优化;遗传算法
low-frequency transformer;multi-objective optimization;genetic algorithm
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS22000D)
作者(Author):
刘黎,尹聪聪,詹江杨,林浩凡,刘云鹏,刘刚
LIU Li,YIN Congcong,ZHAN Jiangyang,LIN Haofan,LIU Yunpeng,LIU Gang
DOI: 10.19585/j.zjdl.202404014
参考文献(References):
- [1]王锡凡,卫晓辉,宁联辉,等.海上风电并网与输送方案比较[J].中国电机工程学报,2014,34(31):5459-5466.WANG Xifan,WEI Xiaohui,NING Lianhui,et al.Integration techniques and transmission schemes for off-shore wind farms[J].Proceedings of the CSEE,2014,34(31):5459-5466.
- [2] PRASAI A,YIM J S,DIVAN D,et al.A new architecture for offshore wind farms[J]. IEEE Transactions on Power Electronics,2008,23(3):1198-1204.
- [3]黄明煌,王秀丽,刘沈全,等.分频输电应用于深远海风电并网的技术经济性分析[J].电力系统自动化,2019,43(5):167-174.HUANG Minghuang,WANG Xiuli,LIU Shenquan,et al.Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems,2019,43(5):167-174.
- [4]刘卫东,李奇南,王轩,等.大规模海上风电柔性直流输电技术应用现状和展望[J].中国电力,2020,53(7):55-71.LIU Weidong,LI Qinan,WANG Xuan,et al.Application status and prospect of VSC-HVDC technology for largescale offshore wind farms[J]. Electric Power,2020,53(7):55-71.
- [5]赵国亮,陈维江,邓占锋,等.柔性低频交流输电关键技术及应用[J].电力系统自动化,2022,46(15):1-10.ZHAO Guoliang,CHEN Weijiang,DENG Zhanfeng,et al. Key technologies and application of flexible lowfrequency AC transmission[J]. Automation of Electric Power Systems,2022,46(15):1-10.
- [6] DOMíNGUEZ-GARCíA J L,ROGERS D J,UGALDELOO C E,et al.Effect of non-standard operating frequencies on the economic cost of offshore AC networks[J].Renewable Energy,2012,44:267-280.
- [7] WYLLIE P B,TANG Y,RAN L,et al.Low frequency AC transmission-elements of a design for wind farm connection[C]//11th IET International Conference on AC and DC Power Transmission.Birmingham,UK.Institution of Engineering and Technology,2015:1-5.
- [8]王佳宁,邹强,胡嘉汶,等.一种中压绝缘大功率中频变压器的优化设计方法[J].电工技术学报,2022,37(12):3048-3060.WANG Jianing,ZOU Qiang,HU Jiawen,et al.An optimal design method for medium-voltage insulated highpower medium-frequency transformer[J].Transactions of China Electrotechnical Society,2022,37(12):3048-3060.
- [9]陈彬,梁旭,唐波,等.大功率中频三相变压器优化设计方法[J].中国电机工程学报,2021,41(8):2877-2890.CHEN Bin,LIANG Xu,TANG Bo,et al. Optimization method of high-power medium-frequency three-phase transformer[J].Proceedings of the CSEE,2021,41(8):2877-2890.
- [10]袁轩,李琳,刘任,等.三绕组高频变压器优化设计方法[J].电网技术,2021,45(11):4523-4533.YUAN Xuan,LI Lin,LIU Ren,et al.Optimization design for three-winding high-frequency transformer[J]. Power System Technology,2021,45(11):4523-4533.
- [11]杨慧娜,刘钢.基于二代非支配排序遗传算法的电子变压器多目标优化[J].华北电力大学学报(自然科学版),2013,40(5):31-35.YANG Huina,LIU Gang. Optimization design of highpower electronic transformer based on NASG-Ⅱ[J].Journal of North China Electric Power University(Natural Science Edition),2013,40(5):31-35.
- [12] DANESHMAND S V,HEYDARI H.A diversified multiobjective simulated annealing and genetic algorithm for optimizing a three-phase HTS transformer[J].IEEE Transactions on Applied Superconductivity,2016,26(2):1-10.
- [13] DOS S COELHO L,MARIANI V C,GUERRA F A,et al.Multiobjective optimization of transformer design using a chaotic evolutionary approach[J].IEEE Transactions on Magnetics,2014,50(2):669-672.
- [14] GARCIA-BEDIAGA A,VILLAR I,RUJAS A,et al.Multiobjective optimization of medium-frequency transformers for isolated soft-switching converters using a genetic algorithm[J].IEEE Transactions on Power Electronics,2017,32(4):2995-3006.
- [15] JARITZ M,BIELA J.Optimal design of a modular series parallel resonant converter for a solid state 2.88 MW/115 kV long pulse modulator[J]. IEEE Transactions on Plasma Science,2014,42(10):3014-3022.
- [16]曹小鹏,陈武,宁光富,等.基于多目标遗传算法的大功率高频变压器优化设计[J].中国电机工程学报,2018,38(5):1348-1355.CAO Xiaopeng,CHEN Wu,NING Guangfu,et al.Optimization design of high-power high-frequency transformer based on multi-objective genetic algorithm[J].Proceedings of the CSEE,2018,38(5):1348-1355.
- [17]国家能源局.220~750 kV油浸式电力变压器使用技术条件:DL/T 272—2012[S].北京:中国电力出版社,2012.
- [18] RAGNAR BERGLUND.Frequency dependence of transformer losses[D].Goteborg:Chalmers University of Technology,2009.
- [19]崔钰钊.基于分磁环的高温超导变压器绕组端部磁场优化研究[D].北京:北京交通大学,2021.CUI Yuzhao.Research on optimization of magnetic field at winding end of HTS transformer based on split magnetic ring[D].Beijing:Beijing Jiaotong University,2021.
- [20]郑黎明.油浸式立体卷铁心变压器的优化设计研究[D].广州:华南理工大学,2013.ZHENG Liming. Research on optimal design of oilimmersed three-dimensional winding core transformer[D].Guangzhou:South China University of Technology,2013.
- [21] COELLO COELLO C A. Evolutionary multi-objective optimization:a historical view of the field[J].IEEE Computational Intelligence Magazine,2006,1(1):28-36.