浙江电力

2024, v.43;No.344(12) 95-103

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于边缘神经网络的海岛光伏表面异常检测
Surface anomaly detection on island-based PV panels using edge neural networks

张引贤,张展耀,张希雅
ZHANG Yinxian,ZHANG Zhanyao,ZHANG Xiya

摘要(Abstract):

光伏表面异常检测对于光伏运维至关重要,而海岛光伏表面异常存在尺寸小、颜色差异小等难题。针对传统检测方法检测精度差和效率低的问题,提出一种基于边缘神经网络的海岛光伏表面异常检测方法。首先,结合卷积神经网络和注意力机制,构建多尺度特征融合的异常检测模型,深入挖掘细粒度异常特征,提升表面异常检测精度;进一步,采用双动态模型压缩技术,压缩冗余通道和特征块,显著降低模型计算复杂度,实现快速且高精度的异常检测。所提方法在舟山海岛光伏表面异常检测业务中表现良好,充分展示了其有效性和优越性。
Surface anomaly detection on photovoltaic(PV) panels is crucial for their operation and maintenance, especially in island environments where challenges such as small anomaly sizes and minimal color differences are prevalent. Due to the poor accuracy and low efficiency of existing detection methods, the paper proposes a surface anomaly detection method for island-based PV panels using edge neural networks. First, by use of convolutional neural networks(CNNs) and attention mechanisms, an anomaly detection model, characterized by multi-scale feature fusion, is constructed to explore the features of fine-grained anomalies, thereby enhancing the surface anomaly detection accuracy. Additionally, a dual dynamic model compression technique is employed to reduce redundant channels and feature blocks, significantly lowering the model's computational complexity and enabling rapid and accurate anomaly detection. The proposed method demonstrates strong performance in surface anomaly detection on PV panels in Zhoushan, highlighting its effectiveness and superiority.

关键词(KeyWords): 海岛光伏;异常检测;模型压缩;多尺度特征融合
island-based PV panels;anomaly detection;model compression;multi-scale feature fusion

Abstract:

Keywords:

基金项目(Foundation): 浙江省自然科学基金资助项目(LDT23F01013F01);; 国网浙江省电力有限公司科技项目(B311ZS230002)

作者(Author): 张引贤,张展耀,张希雅
ZHANG Yinxian,ZHANG Zhanyao,ZHANG Xiya

DOI: 10.19585/j.zjdl.202412010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享