浙江电力

2022, v.41;No.317(09) 80-85

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于粒子群优化和改进蚁群算法的电力供应链博弈分析
Game analysis of supply chain of the power system based on particle swarm optimization and improved ant colony algorithm

姚拓中
YAO Tuozhong

摘要(Abstract):

传统电力供应链存在智能化协同程度低和节点企业合作效率低等问题,影响了供应链节点企业的利润。为此,在区块链技术基础上搭建基于供应商和经销商的二级供应链博弈模型,提出一种利用粒子群优化和蚁群算法指导供应链节点企业通过博弈作出最优选择的竞争策略。先通过粒子群优化算法估计供应商的利润函数并以此为基础制定初始的竞争博弈策略,进而采用基于深度神经网络优化的蚁群算法实现供应商和经销商的最优业务匹配。最后,通过实验验证了所提方法对于提高电力供应链企业竞争力的有效性。
The traditional power system supply chain is inferior in intelligent coordination and is inefficient in cooperation between nodal enterprises,of which the profits are held up. Therefore,a two-level supply chain game model based on suppliers and dealers is built with the help of blockchain technology. This paper proposes a method that combines particle swarm optimization and ant colony algorithm to guide the supply chain nodal enterprises to select the optimal competition strategy through gaming. It estimates the supplier's profit function through particle swarm optimization algorithm and thus formulates the initial competition game strategy. Besides,the ant colony algorithm based on deep neural network optimization is used to match suppliers and dealers perfectly. Finally,experiments verify the effectiveness of this method in improving the competitiveness of power supply chain enterprises.

关键词(KeyWords): 供应链博弈;粒子群优化;蚁群算法;深度学习
supply chain gaming;particle swarm optimization;ant colony algorithm;deep learning

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金面上项目(62071267);; 浙江大学工业控制国家重点实验室开放课题(ICT20047);; 国网浙江省电力有限公司科技项目(5211WF20000C)

作者(Author): 姚拓中
YAO Tuozhong

DOI: 10.19585/j.zjdl.202209010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享