基于自适应小波和改进EWT的谐波与间谐波检测Harmonic and interharmonic detection based on adaptive wavelet and improved EWT
孔垂锐,陈凤仙,杨灵睿,车玉奎,杨海贤,夏巍,郭成
KONG Chuirui,CHEN Fengxian,YANG Lingrui,CHE Yukui,YANG Haixian,XIA Wei,GUO Cheng
摘要(Abstract):
针对EWT(经验小波变换)分解谐波信号时存在的对噪声敏感和过分解问题,提出了一种基于自适应小波和改进EWT的谐波与间谐波检测方法。首先,为了改善传统小波阈值函数效果,提出了一种自适应无参阈值函数;然后,通过EWT分析信号的频谱,得到一系列滤波组对信号进行分量分解;最后,引入DTW(动态时间规整)对过分解信号进行重构,得到最终的分量并辨识其频率和幅值。仿真结果表明,所提算法有效抑制了谐波中存在的噪声,并改善了EWT的过分解问题。通过与EMD(经验模态分解)和PSO-VMD(基于粒子群优化的变分模态分解)进行对比,验证了所提方法在分离谐波和间谐波检测方面的优越性。
To address the issues of noise sensitivity and over-decomposition when decomposing harmonic signals using empirical wavelet transform(EWT), a method based on adaptive wavelet denoising and improved EWT is proposed for detecting harmonics and interharmonics. Firstly, to enhance the effectiveness of traditional wavelet threshold functions, an adaptive parameterless threshold function is introduced. Then, by analyzing the signal spectrum using EWT, a series of filter banks is obtained to decompose the signal components. Finally, dynamic time warping(DTW) is employed to reconstruct the over-decomposed signals, resulting in the final components and identifying their frequencies and amplitudes. Simulation results demonstrate that the proposed method effectively suppresses noise in the harmonics and improves the over-decomposition of EWT. Comparison with empirical mode decomposition(EMD) and particle swarm optimization based variational mode decomposition(PSO-VMD) verifies the superiority of the proposed method in separating harmonics and detecting interharmonics.
关键词(KeyWords):
谐波;间谐波;EWT;小波阈值函数;DTW
harmonic;interharmonic;EWT;wavelet threshold function;DTW
基金项目(Foundation): 云南省联合基金重点项目(202201BE070001-15);; 云南电网公司科技项目(YNKJXM20220053)
作者(Author):
孔垂锐,陈凤仙,杨灵睿,车玉奎,杨海贤,夏巍,郭成
KONG Chuirui,CHEN Fengxian,YANG Lingrui,CHE Yukui,YANG Haixian,XIA Wei,GUO Cheng
DOI: 10.19585/j.zjdl.202411011
参考文献(References):
- [1] MA Z X,CHEN H,CHAI Y L.Analysis of voltage stability uncertainty using stochastic response surface method related to wind farm correlation[J].Protection and Control of Modern Power Systems,2017,2(3):211-219.
- [2]胡博,谢开贵,邵常政,等.双碳目标下新型电力系统风险评述:特征、指标及评估方法[J].电力系统自动化,2023,47(5):1-15.HU Bo,XIE Kaigui,SHAO Changzheng,et al.Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality:characteristics,indices and assessment methods[J]. Automation of Electric Power Systems,2023,47(5):1-15.
- [3]武海燕,闫桂红,刘紫玉,等.考虑安全稳定约束的电网新能源承载能力分析[J].内蒙古电力技术,2022,40(4):61-67.WU Haiyan,YAN Guihong,LIU Ziyu,et al.Analysis of new energy carrying capacity of power grid considering security and stability constraints[J].Inner Mongolia Electric Power,2022,40(4):61-67.
- [4]郇政林,刘杰,徐沈智,等.面向高比例新能源接入的源-荷-储灵活性资源协调规划[J].电网与清洁能源,2022,50(7):107-117.HUAN Zhenglin,LIU Jie,XU Shenzhi,et al.Source-loadstorage flexibility resource coordinated planning for high proportion of renewable energy[J]. Power System and Clean Energy,2022,50(7):107-117.
- [5]张明,陆东亮,徐诗露,等.基于自适应容积卡尔曼滤波的动态谐波检测[J].智慧电力,2022,50(12):48-54.ZHANG Ming,LU Dongliang,XU Shilu,et al.Dynamic harmonic detection based on adaptive cubature kalman filter[J].Smart Power,2022,50(12):48-54.
- [6]肖勇,李博,尹家悦,等.基于小波变换和小波包变换的间谐波检测[J].智慧电力,2022,50(1):101-107.XIAO Yong,LI Bo,YIN Jiayue,et al.Interharmonic detection based on wavelet transform and wavelet packet transform[J].Smart Power,2022,50(1):101-107.
- [7]朱雅庆,纪荣祎,董登峰,等.欠采样全相位FFT鉴相方法仿真与实现[J].红外与激光工程,2023,52(11):223-233.ZHU Yaqing,JI Rongyi,DONG Dengfeng,et al.Simulation and implementation of undersampling all-phase FFT phase discrimination method[J].Infrared and Laser Engineering,2023,52(11):223-233.
- [8]曹丽明,李娜,岳洁.基于FFT的风力发电机转子谐波分析方法研究[J].大电机技术,2024(2):9-13.CAO Liming,LI Na,YUE Jie.An algorithm for harmonic analysis of wind turbine rotor based on FFT[J]. Large Electric Machine and Hydraulic Turbine,2024(2):9-13.
- [9]陆东亮,张明,徐诗露,等.基于混合卷积窗六谱线插值的全相位谐波检测算法[J].电力电容器与无功补偿,2023,44(4):41-47.LU Dongliang,ZHANG Ming,XU Shilu,et al.All-phase harmonic detection algorithm based on six-spectral line interpolation of hybrid convolution window[J]. Power Capacitor&Reactive Power Compensation,2023,44(4):41-47.
- [10]王娟,张尔东,于广艳.基于加窗FFT和HWT算法的谐波检测系统设计[J].电测与仪表,2021,58(7):189-194.WANG Juan,ZHANG Erdong,YU Guangyan.Design of harmonic detection system based on FFT and HWT algorithms[J]. Electrical Measurement&Instrumentation,2021,58(7):189-194.
- [11]汪旭明,田堃,雷可君,等.基于Blackman窗六谱线插值FFT谐波分析方法[J].实验室研究与探索,2020,39(6):22-26.WANG Xuming,TIAN Kun,LEI Kejun,et al. A harmonic analysis method based on Blackman window Sixspectrum-line interpolation FFT[J].Research and Exploration in Laboratory,2020,39(6):22-26.
- [12]徐勇,向运琨,曾麟,等.基于分段加Nuttall窗插值FFT的电压暂降检测方法[J].自动化仪表,2021,42(9):54-60.XU Yong,XIANG Yunkun,ZENG Lin,et al.Voltage sag detection method based on segmented interpolation FFT with nuttall window[J].Process Automation Instrumentation,2021,42(9):54-60.
- [13]商立群,许海洋,臧鹏,等.基于DFT和群组谐波能量回收理论的谐波与间谐波检测算法[J].电力系统保护与控制,2022,50(15):91-98.SHANG Liqun,XU Haiyang,ZANG Peng,et al.A harmonic and interharmonic detection algorithm based on DFT and group harmonic energy recovery theory[J].Power System Protection and Control,2022,50(15):91-98.
- [14]朱权洁,隋龙琨,陈学习,等.基于EMD-SVD的矿山微震信号降噪方法及其应用[J].安全与环境工程,2024,31(3):110-119.ZHU Quanjie,SUI Longkun,CHEN Xuexi,et al.Denoising method and application of mine microseismic signal based on EMD-SVD[J].Safety and Environmental Engineering,2024,31(3):110-119.
- [15]王果,雷武,闵永智,等.改进EEMD算法在高压并联电抗器声信号去噪中的应用[J].电力系统保护与控制,2023,51(24):164-174.WANG Guo,LEI Wu,MIN Yongzhi,et al.Application of an improved EEMD algorithm in high voltage shunt reactor sound signal denoising[J]. Power System Protection and Control,2023,51(24):164-174.
- [16]江永鑫,陈丽安,郭梦倩,等.基于改进CEEMD和RF的低压串联故障电弧识别方法[J].电力系统保护与控制,2024,52(1):97-108.JIANG Yongxin,CHEN Li’an,GUO Mengqian,et al.Identification method of low voltage series fault arc based on improved CEEMD decomposition and RF[J]. Power System Protection and Control,2024,52(1):97-108.
- [17]周晶,罗日成,黄军.基于改进小波阈值—CEEMDAN的变压器局部放电超声波信号白噪声抑制方法[J].高压电器,2024,60(1):163-171.ZHOU Jing,LUO Richeng,HUANG Jun. White noise suppression method of partial discharge ultrasonic signal of transformer based on improved wavelet thresholdCEEMDAN[J].High Voltage Apparatus,2024,60(1):163-171.
- [18]秦志沁,韩玉环,张毅,等.基于VMD分解和随机矩阵理论的异常用电状态检测[J].太原理工大学学报,2024,55(1):66-72.QIN Zhiqin,HAN Yuhuan,ZHANG Yi,et al. Detection of abnormal power consumption state based on VMD decomposition and random matrix theory[J].Journal of Taiyuan University of Technology,2024,55(1):66-72.
- [19]蒋敏,王明,张建强.基于PSO优化VMD算法的轴承振动信号重构及故障诊断[J].机械设计与研究,2022,38(5):138-141.JIANG Min,WANG Ming,ZHANG Jianqiang.Vibration signal reconstruction and fault diagnosis of rolling bearings based on PSO optimization VMD algorithm[J].Machine Design&Research,2022,38(5):138-141.
- [20]毕潇文,钟俊,张大堃,等.基于改进奇异值与经验小波分解的局放去噪算法[J].电网技术,2021,45(12):4957-4963.BI Xiaowen,ZHONG Jun,ZHANG Dakun,et al. Improved singular value and empirical wavelet decomposition algorithm in partial discharge denoising[J]. Power System Technology,2021,45(12):4957-4963.
- [21]郑炜.基于改进小波阈值的电能质量扰动信号去噪算法[J].电气开关,2021,59(1):28-33.ZHENG Wei. Power quality disturbance signal denoising algorithm based on improved wavelet threshold[J].Electric Switchgear,2021,59(1):28-33.
- [22]孙克仲,鲁迎春,杨笑笑,等.改进小波阈值函数在高功率电源信号去噪中的应用[J/OL].电源学报:1-12[2023-05-16]. http://kns. cnki. net/kcms/detail/12.1420. TM.20221206.1420.001.html.SUN Kezhong,LU Yingchun,YANG Xiaoxiao,et al.Application of Modified Wavelet Threshold Function in High Power Supply Signal[J/OL].Journal of Power Supply:1-12[2023-05-16]. http://kns. cnki. net/kcms/detail/12.1420.TM.20221206.1420.001.html.
- [23]吴飞,马晨浩,程坤.基于改进阈值的振动信号小波去噪方法研究[J].合肥工业大学学报(自然科学版),2022,45(7):873-877.WU Fei,MA Chenhao,CHENG Kun.Study on wavelet denoising method of vibration signal based on improved threshold[J]. Journal of Hefei University of Technology(Natural Science),2022,45(7):873-877.
- [24]马杭,陆文总,耿世宇,等.基于改进阈值函数的小波降噪方法研究[J].激光杂志,2023,44(10):19-24.MA Hang,LU Wenzong,GENG Shiyu,et al.Research on Wavelet denoising method based on improved threshold function[J].Laser Journal,2023,44(10):19-24.
- [25]章剑光,刘理峰,林海峰,等.基于空间相似度和深度学习的中长期用电量预测[J].浙江电力,2021,40(5):45-52.ZHANG Jianguang,LIU Lifeng,LIN Haifeng,et al.Medium and long-term electricity consumption prediction based on spatial similarity and deep learning[J].Zhejiang Electric Power,2021,40(5):45-52.