基于PID控制技术的变压器冷却装置智能喷淋系统的研究及应用Research and Application of Intelligent Spray System for Transformer Cooling Based on PID Controller
黄江宁,吴靖,黄旭亮,宋平,刘文飞
HUANG Jiangning,WU Jing,HUANG Xuliang,SONG Ping,LIU Wenfei
摘要(Abstract):
现有变压器冷却装置主要通过自然冷却或者强制风冷的方式实现散热,由于热传递的速率取决于两者间的温差,在户外高温环境下变压器频繁出现高温报警,必须采用人工喷淋的方式来降温。针对现有冷却装置存在的测温方式简单、降温效果有限、人工降温滞后等问题,提出基于PID控制技术的变压器冷却装置智能喷淋系统,通过对变压器进行多点采集建立实时温度场模型,应用智能算法对变压器油温进行综合分析,实现喷淋系统的提前启动。为控制喷淋流量采用PID控制技术,引入平均流量的概念实现流量大小的连续调节,提出了温度闭环控制策略,调节水流将变压器运行油温始终保持在理想温度。通过搭建实际装置验证了该系统的降温效果,实践表明该系统具有较强的推广应用价值。
The existing cooling device achieves heat dissipation by natural cooling or forced air cooling. Since the rate of heat transfer depends on the temperature difference and high temperature alarms are frequent in outdoor high temperature environments, thus artificial showers must be used to reduce the temperature. In this paper, a intelligent spray system for transformer cooling based on PID controller is proposed with the facts of simple temperature measurement method, unfavorable temperature reduction effect and lagged artificial temperature reduction. The system establishes a real-time temperature field model by performing multipoint acquisition of the transformer, and applies an intelligent algorithm to comprehensively analyze the oil temperature to achieve early start of the spray system. In order to control the flow rate, the concept of average flow rate is introduced to achieve continuous adjustment; besides, a closed-loop temperature control strategy is proposed to regulate the flow of water so that the transformer operating oil temperature can remain at an ideal temperature. Finally, the cooling effect of the system is verified by building an actual device. Practice shows that the system has strong promotion and application value.
关键词(KeyWords):
变压器;冷却装置;多点采集;温度场模型;PID;闭环控制
transformer;cooling device;multi-point acquisition;temperature field model;PID;closed-loop control
基金项目(Foundation):
作者(Author):
黄江宁,吴靖,黄旭亮,宋平,刘文飞
HUANG Jiangning,WU Jing,HUANG Xuliang,SONG Ping,LIU Wenfei
DOI: 10.19585/j.zjdl.201809007
参考文献(References):
- [1]程晓东,顾黎明,周晨.智能变压器冷却器控制系统的应用[J].浙江电力,2010,29(8):9-11.
- [2]梁流铭,马丽军,王敏.一起变压器内部过热故障的分析和处理[J].浙江电力,2013,32(7):26-30.
- [3]黄一民.变压器冷却系统电源自动切换回路缺陷的改进[J].浙江电力,2010,29(1):26-30.
- [4]舒恺,黄琰波,张绍志.变压器室通风状况的实测研究[J].浙江电力,2010,29(12):1-3.
- [5]许南雁,郝继飞,张道明.PWM控制方法用于过程控制的问题研究[J].计算技术与自动化,2004,23(4):62-67.
- [6]王桂枝.PWM控制原理在自动控制中的应用[J].烟台大学学报(自然科学与工程版),1999,12(2):144-146.
- [7]孙立军,秦健.沥青路面温度场的预估模型[J].同济大学学报(自然科学版),2006,34(4):481-483.
- [8]周松林.变压器冷却控制系统控制器的硬件设计[J].现代商贸工业,2007,19(1):112-113.
- [9]张建国,索南加乐.具有温度预测的变压器油温测控的研制[D].西安:西安交通大学,2001.
- [10]王中,张保会,顾平安.主变压器强油循环冷却系统通风控制回路的改造与完善[D].西安:西安交通大学,2005.
- [11]豆朋,王红斌,杜双育.变压器生产厂家产品质量评价模型[J].广东电力,2016,29(1):119-123.
- 变压器
- 冷却装置
- 多点采集
- 温度场模型
- PID
- 闭环控制
transformer - cooling device
- multi-point acquisition
- temperature field model
- PID
- closed-loop control