浙江电力

2026, v.45;No.357(01) 23-33

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于多对抗迁移学习的暂态稳定评估模型
A transient stability assessment model based on multi-adversarial transfer learning

卢国强,李剑,王亦婷,肖智伟,王怀远
LU Guoqiang,LI Jian,WANG Yiting,XIAO Zhiwei,WANG Huaiyuan

摘要(Abstract):

迁移学习被引入电力系统暂态稳定评估中,以覆盖更多的评估场景。然而,当使用迁移学习方法将已知故障的分类边界知识迁移到潜在故障评估时,目标域中潜在故障的临界样本评估精度往往较低。为解决这一问题,提出一种基于多域鉴别器的多对抗迁移学习模型,引入故障严重程度指标作为先验知识,将故障样本细分为四类;通过多个域鉴别器分别对齐源域和目标域的四类样本,实现了源域与目标域数据的对齐;借助多对抗自适应框架,实现了样本分布的细粒度对齐,提升了目标域临界样本的评估精度,并进一步增强了迁移模型的正向迁移能力。IEEE 39系统和某区域电网的仿真结果验证了方法的有效性。
Transfer learning has been introduced to power system transient stability assessment(TSA) to expand scenario coverage. However, when transferring the classification boundary knowledge from known faults to potential fault assessments, existing methods often exhibit low accuracy for critical samples in the target domain. To address this, this paper proposes a multi-adversarial transfer learning model with multi-domain discriminators. By incorporating fault severity indices as prior knowledge, fault samples are subdivided into four classes. Multiple domain discriminators then align these four sample categories between source and target domains. Through a multi-adversarial adaptation framework, granular alignment of sample distribution is achieved. This approach significantly improves the assessment accuracy for critical samples in the target domain while enhancing the model's positive transfer capability. Simulation results on the IEEE 39-bus system and a regional power grid validate the effectiveness of the proposed method.

关键词(KeyWords): 暂态稳定评估;迁移学习;对抗迁移;多域鉴别器;故障严重程度
TSA;transfer learning;adversarial transfer;multi-domain discriminator;fault severity

Abstract:

Keywords:

基金项目(Foundation): 福建省自然科学基金(2022J01113);; 国网青海省电力有限公司科技项目(522800230001)

作者(Author): 卢国强,李剑,王亦婷,肖智伟,王怀远
LU Guoqiang,LI Jian,WANG Yiting,XIAO Zhiwei,WANG Huaiyuan

DOI: 10.19585/j.zjdl.202601003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享