浙江电力

2023, v.42;No.324(04) 72-78

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于DBSCAN算法的售电均价异常识别模型构建与应用
Construction and application of the identification model of average electricity selling price anomaly based on the DBSCAN algorithm

杨玉强,胡若云
YANG Yuqiang,HU Ruoyun

摘要(Abstract):

随着电力市场化改革推进,电力改革出现市场主体多元化、利益诉求多样化的新趋势。为了解决电力市场售电均价水平偏高,部分用户用电成本上涨的问题,以售电公司售电均价异常智能分析为切入点,构建售电公司代理零售用户市场化均价异常分析模型;运用DBSCAN聚类分析算法定位电价异常的零售用户,智能划分不同异常用户群体并进行溯源分析;分析结果便于电网公司主动服务用户降低成本,同时辅助政府决策,推动电力市场化改革。
With the advancement of the market-oriented reform of electricity, a new trend of pluralistic market entities and diversified interest demands has emerged in the power reform. In order to solve the problem of a high average price level of electricity sold in the electricity market and the rising cost of electricity for some customers, the intelligent analysis of average electricity selling price anomaly of electricity selling companies is conducted first, and an analysis model for market-oriented average electricity price anomaly of retail users with electricity sales company as their agent is built. The DBSCAN clustering algorithm is used to locate retail users with electricity price anomaly, intelligently divide different groups of customers with the anomaly and conduct traceability analysis so that power grid enterprises can proactively serve customers, reduce costs, assist government decision-making, and promote market-oriented reform of electricity.

关键词(KeyWords): 零售均价;DBSCAN算法;异常挖掘;聚类分析
average retail price;DBSCAN algorithm;anomaly extraction;cluster analysis

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 杨玉强,胡若云
YANG Yuqiang,HU Ruoyun

DOI: 10.19585/j.zjdl.202304009

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享