干风联合停炉保护技术在9E级联合循环机组的应用Application of Dry-air Combined Lay-up Protection Technology in 9E Combined Cycle Unit
胡孟文,楼华栋,冯礼奎
HU Mengwen,LOU Huadong,FENG Likui
摘要(Abstract):
针对联合循环机组停运时的腐蚀问题,应用一种适用于联合循环机组特点的干风联合停炉保护技术,设计了相应的干风保护系统,使保护范围覆盖机组全部水汽系统设备。在热炉放水后,以干风通风方式将停运热力设备相对湿度维持在50%以下,配合使用气相缓蚀剂,使停运腐蚀防护效果达到最佳。腐蚀挂片试验表明,除凝汽器底部因积水较多腐蚀指示片有轻微腐蚀外,热力系统中其它部位腐蚀速率接近为0。对使用干风联合保护法前后机组启动阶段水汽品质进行比较,采用干风联合停炉保护技术后,汽轮机冲转阶段凝结水、给水、蒸汽铁含量分别下降48.7%, 37.0%, 38.1%;满负荷运行8 h后的凝结水、给水、过热蒸汽平均铁离子含量下降幅度分别达到87.6%, 78.2%和89.4%。
Given the lay-up corrosion protection for the combined cycle unit, a dry-air combined lay-up protection technology for the combined cycle unit was applied to design a dry-air protection system to cover all the water-vapour system devices. After furnace exhaust, the relative humidity of the gas turbine unit is kept under 50% during the lay-up period, and by use of vapour phase corrosion inhibitor, the best maintenance effect for the lay-up of the gas turbine unit is achieved. The corrosion coupon test shows that the indicator at the bottom of the condenser was slightly corroded, the indicators at the other locations were non-corrosive. The water-vapour quality comparison before and after the dry-air system shows that the iron ion contents in condense water, feed water and steam in steam turbine rush respectively decreased by 48.7%, 37.0% and 38.1%; the iron ion contents in condense water, feed water and overheat steam after 8-hour full load operation respectively decreased by 87.6%, 78.2% and 89.4%.
关键词(KeyWords):
燃气-蒸汽联合循环机组;干风联合保护;停(备)用腐蚀;水汽系统;保养效果
gas-steam combined cycle unit;dry-air combined protection;lay-up corrosion;water-vapor system;maintenance effect
基金项目(Foundation): 华电国际科研项目(HDPIKJ16-02-09)
作者(Author):
胡孟文,楼华栋,冯礼奎
HU Mengwen,LOU Huadong,FENG Likui
DOI: 10.19585/j.zjdl.201912008
参考文献(References):
- [1]苏保兴,姚勇,9E燃机-蒸汽联合循环调峰机组停(备)用保养技术研究[J].华电技术,2012,34(增):1-7.
- [2]火力发电厂停(备)用热力设备防锈蚀导则:DL/T 956—2017[S].北京:中国电力出版社,2018.
- [3]冯礼奎,楼华栋,赖建忠.联合循环余热机组停备用保护技术[J].浙江电力,2018,37(8):86-91.
- [4]周静华.燃气-蒸汽联合循环余热锅炉停炉保养方法探讨[J].发电设备,2011,25(3):183-186.
- [5]龚询洁.热力设备的腐蚀与防护[M].北京:中国电力出版社,1998.
- [6]谢学军,王浩,邹品果,等.铁-水体系电位-pH图与氧化性水工况的腐蚀控制[J].华北电力技术,2011:23-25.
- [7]杨道武,朱志平,李宇春,等.电化学与电力设备的腐蚀与防护[M].北京:中国电力出版社,2004.
- [8]张大全,高立新,周国定.气相防锈蚀技术及其在热力设备停备用保护中的应用[J].腐蚀与防护,2001(1):20-22.
- [9]汤海珠,谢学军,傅强,等.热力系统新型停用保护缓蚀剂[J].腐蚀科学与防护技术,2002,14(6):356-358.
- [10]龚国龙.碳酸铵缓蚀剂在机组长期停备用保护中的实践[J].山西电力,2012(5):69-72.
- [11]火力发电厂气相缓蚀剂质量标准:DL/T 1282—2013[S].北京:中国电力出版社,2014.
- [12]陈小华.热力机组停用保护方法[J].热能动力工程,2001(11):664-665.
- [13]刘兴传.电采暖锅炉运行水质控制[J].山西电力,2018(3):65-68.